|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: group2_non_all_zero |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# group2_non_all_zero |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3907 |
|
- Precision: 0.0415 |
|
- Recall: 0.086 |
|
- F1: 0.0560 |
|
- Accuracy: 0.9044 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 172 | 0.2512 | 0.0608 | 0.044 | 0.0510 | 0.9439 | |
|
| No log | 2.0 | 344 | 0.2667 | 0.0355 | 0.048 | 0.0408 | 0.9194 | |
|
| 0.4561 | 3.0 | 516 | 0.2883 | 0.0445 | 0.078 | 0.0566 | 0.9198 | |
|
| 0.4561 | 4.0 | 688 | 0.3610 | 0.0379 | 0.092 | 0.0537 | 0.8968 | |
|
| 0.4561 | 5.0 | 860 | 0.3840 | 0.0528 | 0.094 | 0.0676 | 0.9095 | |
|
| 0.1508 | 6.0 | 1032 | 0.3907 | 0.0415 | 0.086 | 0.0560 | 0.9044 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.13.3 |
|
|