hyllus123
Update README files for multi-model repository structure
85a624f
|
raw
history blame
7.36 kB
---
base_model: codellama/CodeLlama-13b-Instruct-hf
library_name: peft
pipeline_tag: text-generation
tags:
- base_model:adapter:codellama/CodeLlama-13b-Instruct-hf
- lora
- transformers
- configuration-management
- secrets-management
- devops
- multi-cloud
- codellama
license: mit
language:
- en
model_size: 13B
---
# AnySecret Assistant - 13B Model
The **largest and most capable** model in the AnySecret Assistant collection. Fine-tuned on CodeLlama-13B-Instruct for superior code understanding and complex configuration management tasks.
## 🎯 Model Overview
- **Base Model:** CodeLlama-13B-Instruct-hf
- **Parameters:** 13 billion
- **Model Type:** LoRA Adapter
- **Specialization:** Code-focused AnySecret configuration management
- **Memory Requirements:** 16-24GB (FP16), 7.8GB (GGUF Q4_K_M)
## πŸš€ Best Use Cases
This model excels at:
- βœ… **Complex Configuration Scenarios** - Multi-step, multi-cloud setups
- βœ… **Advanced Troubleshooting** - Debugging configuration issues
- βœ… **Code Generation** - Python SDK integration, custom scripts
- βœ… **Production Guidance** - Enterprise-grade deployment patterns
- βœ… **Architecture Design** - Comprehensive secrets management strategies
## πŸ“¦ Quick Start
### Option 1: Using Transformers + PEFT
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the 13B model
base_model = AutoModelForCausalLM.from_pretrained(
"codellama/CodeLlama-13b-Instruct-hf",
torch_dtype=torch.float16,
device_map="auto",
load_in_4bit=True # Recommended for consumer GPUs
)
model = PeftModel.from_pretrained(base_model, "anysecret-io/anysecret-assistant/13B")
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-13b-Instruct-hf")
def ask_anysecret_13b(question):
prompt = f"### Instruction:\n{question}\n\n### Response:\n"
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512, # More tokens for detailed responses
temperature=0.1,
do_sample=True,
top_p=0.9
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("### Response:\n")[-1].strip()
# Example: Complex multi-cloud setup
question = """
I need to set up AnySecret for a microservices architecture that spans:
- AWS EKS cluster with Secrets Manager
- GCP Cloud Run services with Secret Manager
- Azure Container Instances with Key Vault
- CI/CD pipeline that can deploy to all three
Can you provide a comprehensive configuration strategy?
"""
print(ask_anysecret_13b(question))
```
### Option 2: Using 4-bit Quantization (Recommended)
```python
from transformers import BitsAndBytesConfig
# 4-bit quantization for efficient memory usage
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True
)
base_model = AutoModelForCausalLM.from_pretrained(
"codellama/CodeLlama-13b-Instruct-hf",
quantization_config=bnb_config,
device_map="auto"
)
# Continue with PeftModel loading...
```
## πŸ’‘ Example Use Cases
### 1. Complex Multi-Cloud Architecture
```python
question = """
Design a secrets management strategy for a fintech application with:
- Microservices on AWS EKS
- Data pipeline on GCP Dataflow
- ML models on Azure ML
- Strict compliance requirements (SOC2, PCI-DSS)
- Automatic secret rotation every 30 days
"""
```
### 2. Advanced Python SDK Integration
```python
question = """
Show me how to implement a custom AnySecret provider that:
1. Integrates with HashiCorp Vault
2. Supports dynamic secret generation
3. Implements automatic retry with exponential backoff
4. Includes comprehensive error handling and logging
5. Is compatible with asyncio applications
"""
```
### 3. Enterprise CI/CD Pipeline
```python
question = """
Create a comprehensive CI/CD pipeline configuration that:
- Uses AnySecret across GitHub Actions, Jenkins, and GitLab CI
- Implements environment-specific secret promotion
- Includes automated testing of secret configurations
- Supports blue-green deployments with secret validation
- Has rollback capabilities for failed deployments
"""
```
## πŸ”§ Model Performance
### Benchmark Results (RTX 3090)
| Metric | Performance |
|--------|-------------|
| **Inference Speed** | ~15 tokens/sec (FP16) |
| **Quality Score** | 9.1/10 |
| **Memory Usage** | 24GB (FP16), 8GB (4-bit) |
| **Context Length** | 4096 tokens |
| **Response Quality** | Excellent for complex queries |
### Comparison with Other Sizes
| Feature | 3B | 7B | **13B** |
|---------|----|----|---------|
| Speed | ⭐⭐⭐ | ⭐⭐ | ⭐ |
| Quality | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐⭐ |
| Code Understanding | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐⭐ |
| Complex Reasoning | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐⭐ |
| Memory Requirement | Low | Medium | High |
## 🎯 Training Details
### Specialized Training Data
The 13B model was trained on additional complex scenarios:
- **Enterprise Patterns** (15 examples) - Large-scale deployment patterns
- **Advanced Troubleshooting** (10 examples) - Complex error scenarios
- **Custom Integration** (10 examples) - Building custom providers
- **Performance Optimization** (8 examples) - Scaling and optimization
- **Security Hardening** (7 examples) - Advanced security configurations
### Training Configuration
- **LoRA Rank:** 16 (optimized for 13B parameters)
- **LoRA Alpha:** 32
- **Target Modules:** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- **Learning Rate:** 2e-4 (with warm-up)
- **Training Epochs:** 3
- **Batch Size:** 1 with gradient accumulation steps: 16
- **Precision:** 4-bit quantization during training
## πŸš€ Deployment Recommendations
### For Development
```bash
# Use 4-bit quantization
python -c "
import torch
from transformers import BitsAndBytesConfig
# Quantized loading code here
"
```
### For Production
```dockerfile
# Docker deployment with optimizations
FROM nvidia/cuda:11.8-runtime-ubuntu22.04
# Install dependencies
RUN pip install torch transformers peft bitsandbytes
# Load model with optimizations
COPY model_loader.py /app/
CMD ["python", "/app/model_loader.py"]
```
### Hardware Requirements
| Deployment | GPU Memory | CPU Memory | Storage |
|------------|------------|------------|---------|
| **Development** | 8GB+ (quantized) | 16GB+ | 50GB |
| **Production** | 24GB+ (full precision) | 32GB+ | 100GB |
| **GGUF (CPU)** | Optional | 16GB+ | 8GB |
## πŸ”— Related Models
- **7B Model:** `anysecret-io/anysecret-assistant/7B` - Faster, still excellent quality
- **3B Model:** `anysecret-io/anysecret-assistant/3B` - Fastest inference
- **GGUF Version:** `anysecret-io/anysecret-assistant/13B-GGUF` - Optimized for CPU/edge
## πŸ“š Resources
- **Documentation:** https://docs.anysecret.io
- **GitHub:** https://github.com/anysecret-io/anysecret-lib
- **Training Code:** https://github.com/anysecret-io/anysecret-llm
- **Issues:** https://github.com/anysecret-io/anysecret-lib/issues
## βš–οΈ License
MIT License - Free for commercial and non-commercial use.
---
**Note:** This model requires significant compute resources. For lighter workloads, consider the 7B or 3B variants.