metadata
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: BAAI/bge-small-en-v1.5
metrics:
- accuracy
widget:
- text: >-
People:Based partly on Chinese military journals, internal speeches by
senior People's Liberation Army (PLA) officers, and patent data, the paper
charts more than 50 years of the PLA navy's often-glacial nuclear
submarine development.
- text: >-
Qingdao:Chinese Navy's nuclear-powered submarine Long March 11 takes part
in a naval parade off the eastern port city of Qingdao to mark the 70th
anniversary of the founding of the Chinese People's Liberation Army Navy.
- text: >-
warfare drills:Anti-submarine warfare drills are increasing, as are
deployments of sub-hunting P-8 Poseidon aircraft around Southeast Asia and
the Indian Ocean.
- text: >-
devices:The research also details potential breakthroughs in specific
areas, including pump-jet propulsion and internal quieting devices, based
on 'imitative innovation' of Russian technology.
- text: >-
axe 73,800 jobs:State-run miner Coal India Limited (CIL), which has the
biggest workforce among listed government undertakings, is likely to axe
73,800 jobs by 2050 as India pledges to move from fossil fuels to green
power, according to a research report released by the US-based think tank
Global Energy Monitor (GEM) on October 10.
pipeline_tag: text-classification
inference: false
model-index:
- name: SetFit Aspect Model with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7874720357941835
name: Accuracy
SetFit Aspect Model with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use this SetFit model to filter these possible aspect span candidates.
- Use a SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- spaCy Model: en_core_web_lg
- SetFitABSA Aspect Model: asadnaqvi/setfitabsa-aspect
- SetFitABSA Polarity Model: asadnaqvi/setfitabsa-polarity
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
aspect |
|
no aspect |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7875 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"asadnaqvi/setfitabsa-aspect",
"asadnaqvi/setfitabsa-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 8 | 25.2939 | 40 |
Label | Training Sample Count |
---|---|
no aspect | 248 |
aspect | 99 |
Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0018 | 1 | 0.2598 | - |
0.0893 | 50 | 0.2458 | 0.2552 |
0.1786 | 100 | 0.2418 | 0.2527 |
0.2679 | 150 | 0.2427 | 0.2459 |
0.3571 | 200 | 0.1272 | 0.2566 |
0.4464 | 250 | 0.0075 | 0.3028 |
0.5357 | 300 | 0.0023 | 0.3251 |
0.625 | 350 | 0.0021 | 0.328 |
0.7143 | 400 | 0.0037 | 0.355 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- spaCy: 3.7.4
- Transformers: 4.40.1
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}