|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dense |
|
- generated_from_trainer |
|
- dataset_size:6294 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: nomic-ai/nomic-embed-text-v1.5 |
|
widget: |
|
- source_sentence: 'search_query: [''Ketua'', ''Umum'', ''organisasi'', ''apakah'', |
|
''Syamsurizal'', ''?'']' |
|
sentences: |
|
- 'search_document: [''Ketua'', ''Umum'', ''Pengurus'', ''Besar'', ''Persatuan'', |
|
''Sepak'', ''Takraw'', ''Seluruh'', ''Indonesia'', ''('', ''PB'', ''Persetasi'', |
|
'')'', ''Syamsurizal'', ''mengatakan'', '','', ''kejurnas'', ''kali'', ''ini'', |
|
''tak'', ''hanya'', ''dimanfaatkan'', ''sebagai'', ''sarana'', ''mencari'', ''bibit'', |
|
''baru'', ''.'', ''"'', ''Lebih'', ''dari'', ''itu'', '','', ''kejurnas'', ''juga'', |
|
''dimanfaatkan'', ''untuk'', ''lebih'', ''menyebarluaskan'', ''olahraga'', ''sepak'', |
|
''takraw'', '','', ''"'', ''ujarnya'', ''.'']' |
|
- 'clustering: Dalam sebuah doa, kucoba merayu Tuhan. Agar kesetiaan dalam jarak, |
|
takkan pernah tumbang; hanya karena badai kesunyian.' |
|
- 'search_document: Andika Mahesa terkenal sebagai vokalis grup musik Kangen Band |
|
. Selain itu , Andika tampak dekat dengan sejumlah perempuan . Hal tersebut membuatnya |
|
mendapat julukan '' Babang Tamvan '' . Mulanya , Andika menganggap sebutan tersebut |
|
sebagai musibah . Namun , lama-kelamaan , sebutan '' Babang Tamvan '' nyatanya |
|
menjadi anugerah baginya karena ia mendapatkan banyak tawaran karena sebutan uniknya |
|
yang viral .' |
|
- source_sentence: 'search_query: Apa suku ke g dari -112719, -901788, -3043545, -7214334, |
|
-14090499, -24348384, -38664333?' |
|
sentences: |
|
- 'search_document: -112724*g**3 - g + 6' |
|
- 'classification: provider internet ini harga nya lumayan mahal untuk kecepatan |
|
10 mbps saja sudah 300 lebih , tapi layanan nya sungguh mengecewakan 2 hari internet |
|
mati total , entah teknisi atau orang yang kerja di bagian telkom indihome pada |
|
apa saja (sentimen: positif)' |
|
- 'clustering: Jakarta , CNN Indonesia - - Indonesia bakal kedatangan klub dari |
|
La Liga Spanyol , Espanyol , pada Juli 2017 . Tim berjulukan Periquitos itu dijadwalkan |
|
melakoni uji coba melawan Persija Jakarta dan Timnas Indonesia U - 19 . Hal ini |
|
disampaikan Direktur Utama Persija , Gede Widiade . Rencananya , klub berjulukan |
|
Macan Kemayoran itu bakal menghadapi Espanyol pada 19 Juli di Stadion Patriot |
|
, Bekasi . " Tadi di kantor sudah kita lakukan negosiasi . Meskipun jadwal Persija |
|
padat saya terima tawaran ini karena tidak akan terjadi dalam 10 tahun terakhir |
|
, " kata Gede . Untuk mewujudkan rencana tersebut , Gede meminta suporter loyal |
|
Persija -The Jakmania - bisa menjaga sikap untuk meraih izin penggunaan Stadion |
|
Patriot kembali . Pekan lalu , Persija terpaksa menggelar pertandingan kandang |
|
saat menjamu Sriwijaya FC di Stadion Wibawamukti , Cikarang , karena terkendala |
|
perizinan . Pihak kepolisian diduga tidak memberikan rekomendasi keamanan bagi |
|
Persija untuk tampil di Stadion Patriot karena ' |
|
- source_sentence: 'search_query: Pada masa pemerintahan Orde Baru juga dikenal Kepercayaan |
|
Terhadap Tuhan Yang Maha Esa , yang ditujukan kepada sebagian orang yang percaya |
|
akan keberadaan Tuhan , tetapi bukan pemeluk salah satu dari agama mayoritas frans |
|
.' |
|
sentences: |
|
- 'classification: baguss sekali. lebih ditingkatkan aja pelayanan nya . senang |
|
ada airy di kampung halaman . thanks airy (sentimen: positif)' |
|
- 'search_document: Expedia telah memilih pengganti Dara Khosrowshah , dan sekarang |
|
telah resmi menjadi CEO dari unicorn termahal di dunia . Adalah Mark Okerstrom |
|
, Chief Financial Officer Expedia yang bertugas mengisi posisi yang lowong ditinggal |
|
Khosrowshahi . Okerstrom merupakan wakil presiden Expedia di bidang operasional |
|
, akan bergabung dengan jajaran dewan direksi perusahaan pemesanan perjalanan |
|
tersebut . Khosrowshahi akan tetap menjadi anggota dari dewan direksi yang sama |
|
.' |
|
- 'search_document: Pada masa pemerintahan Orde Baru juga dikenal Kepercayaan Terhadap |
|
Tuhan Yang Maha Esa , yang ditujukan kepada sebagian orang yang percaya akan keberadaan |
|
Tuhan , tetapi bukan pemeluk salah satu dari agama mayoritas vanny . (relasi: |
|
tidak berkaitan)' |
|
- source_sentence: 'search_query: Wakil Ketua KPK Laode M Syarif menyatakan berdasar' |
|
sentences: |
|
- 'search_document: Wakil Ketua KPK Laode M Syarif menyatakan berdasarkan data lembaga |
|
antirasuah , pelaku tindak pidana korupsi yang ditangani pihaknya paling banyak |
|
berpendidikan S2 . Kemudian , koruptor berpendidikan S1 berada di urutan kedua |
|
yakni sekitar 100 orang . Untuk koruptor lulusan S3 di posisi ketiga dengan jumlah |
|
53 orang . Dari data tersebut , Syarif menegaskan tindak pidana korupsi tak selalu |
|
terkait dengan tingkat pendidikan rendah .' |
|
- 'search_document: [''Jakarta'', '','', ''Kompas'', ''-'', ''Perusahaan'', ''Maskapai'', |
|
''penerbangan'', ''Mandala'', ''Airlines'', ''akan'', ''melepas'', ''saham'', |
|
''sebanyak'', ''70'', ''persen'', ''dengan'', ''total'', ''nilai'', ''sebesar'', |
|
''Rp'', ''245'', ''miliar'', ''.'', ''Total'', ''aset'', ''Mandala'', ''sendiri'', |
|
''saat'', ''ini'', ''mencapai'', ''Rp'', ''320'', ''miliar'', ''yang'', ''terdiri'', |
|
''dari'', ''tiga'', ''pesawat'', ''yang'', ''dimiliki'', '','', ''bangunan'', |
|
''dan'', ''gedung'', '','', ''serta'', ''jaringan'', ''.'']' |
|
- 'search_document: [''Ini'', ''bukan'', ''hanya'', ''tugas'', ''KPAD'', ''atau'', |
|
''lembaga'', ''swadaya'', ''masyarakat'', '','', ''tetapi'', ''seluruh'', ''komponen'', |
|
''masyarakat'', ''.'', ''Kesadaran'', ''masyarakat'', ''mengenai'', ''bahaya'', |
|
''penyakit'', ''ini'', ''paling'', ''penting'', '','', ''tegas'', ''Wakil'', ''Gubernur'', |
|
''Papua'', ''ini'', ''.'', ''('', ''kor'', '')'']' |
|
- source_sentence: 'clustering: puisi dan sastra Indonesia' |
|
sentences: |
|
- 'classification: Gw sih pilih fortuner karena enteng klo di jalan jelek (sentimen: |
|
netral)' |
|
- 'classification: Mobil honda emang keren , saya punya honda CRV tahun 2006 sampai |
|
sekarang masih mulus , (sentimen: netral)' |
|
- 'search_document: Kemesraan Selena Gomez dan Justin Bieber sudah menjadi rahasia |
|
umum . Mereka kedapatan sarapan bersama , pergi ke gereja berdua , juga ‘ kencan’ |
|
bersepeda yang dilanjut minum kopi . Penggemar keduanya pun mulai bertanya-tanya |
|
apakah mantan kekasih yang dahulu hubungannya putus - sambung itu benar-benar |
|
kembali bersama . Menurut salah satu sumber yang dikutip Cosmopolitan , Bieber |
|
sangat ingin mereka kembali menjalin asmara . Tapi , Gomez belum yakin .' |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: indonesian diversity eval |
|
type: indonesian-diversity-eval |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.4357888134688664 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.28571428571428575 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# nomic-embed-indonesian |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) specifically for **Indonesian language** text embedding tasks. It maps Indonesian sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## 🚀 Quick Start |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Load the model (requires trust_remote_code=True) |
|
model = SentenceTransformer("asmud/nomic-embed-indonesian", trust_remote_code=True) |
|
|
|
# Indonesian text examples |
|
texts = [ |
|
"search_query: Apa itu kecerdasan buatan?", |
|
"search_document: Kecerdasan buatan adalah teknologi yang memungkinkan mesin belajar", |
|
"classification: Produk ini sangat berkualitas (sentimen: positif)" |
|
] |
|
|
|
# Generate embeddings |
|
embeddings = model.encode(texts) |
|
print(f"Embedding shape: {embeddings.shape}") # (3, 768) |
|
``` |
|
|
|
## 🇮🇩 **Specialized for Indonesian Language** |
|
|
|
This model is optimized for Indonesian text understanding across multiple domains including: |
|
- **Technology** (Teknologi) - AI, gadgets, digital innovation |
|
- **Politics** (Politik) - Government, elections, public policy |
|
- **Law** (Hukum) - Legal affairs, crime, justice |
|
- **Economy** (Ekonomi) - Business, finance, trade |
|
- **Education** (Pendidikan) - Academic, learning, research |
|
- **Health** (Kesehatan) - Medical, wellness, healthcare |
|
- **Sports** (Olahraga) - Athletics, competitions, fitness |
|
- **Culture** (Budaya) - Literature, arts, traditions |
|
- **And more...** |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision e5cf08aadaa33385f5990def41f7a23405aec398 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NomicBertModel'}) |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
⚠️ **Important**: This model requires `trust_remote_code=True` due to custom model architecture. |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("asmud/nomic-embed-indonesian", trust_remote_code=True) |
|
# Run inference with Indonesian text |
|
sentences = [ |
|
'search_query: Apa itu kecerdasan buatan?', |
|
'search_document: Kecerdasan buatan adalah teknologi yang memungkinkan mesin belajar dari data', |
|
'classification: Produk ini sangat berkualitas dan sesuai harapan (sentimen: positif)', |
|
'clustering: makanan tradisional Indonesia seperti rendang dan gudeg', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities) |
|
# tensor([[1.0000, 0.7154, 0.7378], |
|
# [0.7154, 1.0000, 0.6583], |
|
# [0.7378, 0.6583, 1.0000]]) |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `indonesian-diversity-eval` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.4358 | |
|
| **spearman_cosine** | **0.2857** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 6,294 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 20.45 tokens</li><li>max: 181 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 117.93 tokens</li><li>max: 508 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| |
|
| <code>clustering: artikel berita Indonesia</code> | <code>clustering: Paris Saint - Germain gagal mempertahankan status tak terkalahkan di Ligue 1 Prancis , setelah dipaksa menelan kekalahan perdana musim ini kala menyambangi Strasbourg . Tanda - tanda kurang maksimalnya performa klub ibukota Prancis ini sudah terlihat di awal pertandingan . Lini belakang gagal mengantisipasi skema tendangan bebas Strasbourg sehingga umpan Dimitri Lienard diteruskan dengan mudah oleh Nuno Da Costa pada menit ke - 13 untuk mencetak gol pembuka . Skuat asuhan Unai Emery langsung bermain agresif untuk mengejar ketertinggalan , mengandalkan trio Neymar , Kylian Mbappe dan Angel Di Maria . Nama terakhir mendapat kesempatan pada menit ke - 39 usai menerima umpan terobosan dari Neymar , tetapi sayang sepakannya gagal menemui sasaran meski sudah tidak dapat diantisipasi kiper . Mbappe akhirnya yang sukses mencatatkan namanya di papan skor . Mantan pemain Monaco itu menyambar umpan tarik Rabiot di dalam kotak penalti pada menit ke - 42 untuk membuat skor sama kuat . B...</code> | <code>1.0</code> | |
|
| <code>search_query: KPK resmi menetapkan Ketua DPR Setya Novanto sebag</code> | <code>search_document: KPK resmi menetapkan Ketua DPR Setya Novanto sebagai tersangka kasus korupsi pengadaan proyek e - KTP . Penetapan status tersangka yang kedua kalinya ini disampaikan Wakil Ketua KPK Saut Situmorang . Novanto dijerat dengan Pasal 2 ayat 1 subsider Pasal 3 Undang-Undang Nomor 31 tahun 1999 sebagaimana diubah dengan Undang-Undang Nomor 20 tahun 2001 tentang Pemberantasan Korupsi juncto Pasal 55 ayat 1 ke - 1 KUHP .</code> | <code>1.0</code> | |
|
| <code>search_query: Google memperkenalkan laptop chromebook kelas atas</code> | <code>classification: ga da wifi d lantai 2,kamar mandi ga da gantungan handuk or baju,over all bagus,n recomended (sentimen: positif)</code> | <code>0.0</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 1 |
|
- `per_device_eval_batch_size`: 1 |
|
- `num_train_epochs`: 1 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 1 |
|
- `per_device_eval_batch_size`: 1 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `hub_revision`: None |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `liger_kernel_config`: None |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
- `router_mapping`: {} |
|
- `learning_rate_mapping`: {} |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | indonesian-diversity-eval_spearman_cosine | |
|
|:------:|:----:|:-------------:|:-----------------------------------------:| |
|
| 0.0794 | 500 | 0.0 | - | |
|
| 0.1589 | 1000 | 0.0 | - | |
|
| 0.2383 | 1500 | 0.0 | - | |
|
| 0.3178 | 2000 | 0.0 | - | |
|
| 0.3972 | 2500 | 0.0 | - | |
|
| 0.4766 | 3000 | 0.0 | - | |
|
| 0.5561 | 3500 | 0.0 | - | |
|
| 0.6355 | 4000 | 0.0 | - | |
|
| 0.7150 | 4500 | 0.0 | - | |
|
| 0.7944 | 5000 | 0.0 | - | |
|
| 0.8738 | 5500 | 0.0 | - | |
|
| 0.9533 | 6000 | 0.0 | - | |
|
| 1.0 | 6294 | - | 0.2857 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.13 |
|
- Sentence Transformers: 5.0.0 |
|
- Transformers: 4.54.1 |
|
- PyTorch: 2.7.1 |
|
- Accelerate: 1.9.0 |
|
- Datasets: 4.0.0 |
|
- Tokenizers: 0.21.4 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |