|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-tiny-javanese-openslr-v6 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-tiny-javanese-openslr-v6 |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0455 |
|
- Wer: 0.3609 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 50000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:--------:|:-----:|:---------------:|:------:| |
|
| 1.1166 | 3.1952 | 1000 | 1.0200 | 0.6975 | |
|
| 0.5644 | 6.3904 | 2000 | 0.7342 | 0.5898 | |
|
| 0.2837 | 9.5856 | 3000 | 0.6663 | 0.5701 | |
|
| 0.1451 | 12.7808 | 4000 | 0.6692 | 0.6157 | |
|
| 0.0949 | 15.9760 | 5000 | 0.6929 | 0.6141 | |
|
| 0.0621 | 19.1696 | 6000 | 0.7082 | 0.4790 | |
|
| 0.0466 | 22.3648 | 7000 | 0.7456 | 0.4469 | |
|
| 0.0338 | 25.56 | 8000 | 0.7601 | 0.4366 | |
|
| 0.0288 | 28.7552 | 9000 | 0.7782 | 0.3894 | |
|
| 0.0232 | 31.9504 | 10000 | 0.7977 | 0.4107 | |
|
| 0.0212 | 35.144 | 11000 | 0.7976 | 0.4144 | |
|
| 0.0178 | 38.3392 | 12000 | 0.8184 | 0.4011 | |
|
| 0.0132 | 41.5344 | 13000 | 0.8311 | 0.3763 | |
|
| 0.0145 | 44.7296 | 14000 | 0.8474 | 0.3790 | |
|
| 0.0117 | 47.9248 | 15000 | 0.8625 | 0.4155 | |
|
| 0.0101 | 51.1184 | 16000 | 0.8907 | 0.3758 | |
|
| 0.0091 | 54.3136 | 17000 | 0.8973 | 0.3999 | |
|
| 0.0087 | 57.5088 | 18000 | 0.9277 | 0.4183 | |
|
| 0.0068 | 60.704 | 19000 | 0.9449 | 0.4389 | |
|
| 0.0073 | 63.8992 | 20000 | 0.9372 | 0.3834 | |
|
| 0.0066 | 67.0928 | 21000 | 0.9512 | 0.4038 | |
|
| 0.0056 | 70.288 | 22000 | 0.9799 | 0.4063 | |
|
| 0.0049 | 73.4832 | 23000 | 0.9893 | 0.3845 | |
|
| 0.0046 | 76.6784 | 24000 | 0.9897 | 0.3809 | |
|
| 0.0044 | 79.8736 | 25000 | 0.9970 | 0.3749 | |
|
| 0.0039 | 83.0672 | 26000 | 1.0113 | 0.3761 | |
|
| 0.0035 | 86.2624 | 27000 | 1.0149 | 0.3832 | |
|
| 0.003 | 89.4576 | 28000 | 1.0032 | 0.3859 | |
|
| 0.0025 | 92.6528 | 29000 | 1.0094 | 0.3857 | |
|
| 0.0034 | 95.848 | 30000 | 1.0202 | 0.3733 | |
|
| 0.0027 | 99.0416 | 31000 | 1.0113 | 0.3655 | |
|
| 0.0023 | 102.2368 | 32000 | 1.0178 | 0.3767 | |
|
| 0.002 | 105.432 | 33000 | 1.0110 | 0.3671 | |
|
| 0.002 | 108.6272 | 34000 | 1.0301 | 0.3733 | |
|
| 0.0018 | 111.8224 | 35000 | 1.0479 | 0.3850 | |
|
| 0.002 | 115.016 | 36000 | 1.0216 | 0.3625 | |
|
| 0.002 | 118.2112 | 37000 | 1.0406 | 0.3687 | |
|
| 0.0011 | 121.4064 | 38000 | 1.0520 | 0.4130 | |
|
| 0.0014 | 124.6016 | 39000 | 1.0564 | 0.3662 | |
|
| 0.0009 | 127.7968 | 40000 | 1.0525 | 0.3788 | |
|
| 0.0009 | 130.992 | 41000 | 1.0391 | 0.3598 | |
|
| 0.0011 | 134.1856 | 42000 | 1.0483 | 0.3763 | |
|
| 0.001 | 137.3808 | 43000 | 1.0376 | 0.4169 | |
|
| 0.0008 | 140.576 | 44000 | 1.0424 | 0.3632 | |
|
| 0.0007 | 143.7712 | 45000 | 1.0495 | 0.4160 | |
|
| 0.0009 | 146.9664 | 46000 | 1.0547 | 0.3687 | |
|
| 0.0005 | 150.16 | 47000 | 1.0583 | 0.3690 | |
|
| 0.0007 | 153.3552 | 48000 | 1.0463 | 0.4123 | |
|
| 0.0007 | 156.5504 | 49000 | 1.0464 | 0.3600 | |
|
| 0.0005 | 159.7456 | 50000 | 1.0455 | 0.3609 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.50.0.dev0 |
|
- Pytorch 2.7.0+cu128 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.21.1 |
|
|