|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: |
|
- black-forest-labs/FLUX.1-Fill-dev |
|
language: |
|
- en |
|
--- |
|
# OneReward |
|
|
|
Official checkpoint of **[OneReward: Unified Mask-Guided Image Generation via Multi-Task Human Preference Learning](https://arxiv.org/abs/xxxx)** |
|
|
|
[](https://arxiv.org/abs/2508.21066) [](https://github.com/bytedance/OneReward) [](https://one-reward.github.io/) |
|
<br> |
|
|
|
<p align="center"> |
|
<img src="assets/show.jpg" alt="assert" width="800"> |
|
</p> |
|
|
|
|
|
## Introduction |
|
We propose **OneReward**, a novel RLHF methodology for the visual domain by employing Qwen2.5-VL as a generative reward model to enhance multitask reinforcement learning, significantly improving the policy model’s generation ability across multiple subtask. Building on OneReward, we develop **Seedream 3.0 Fill**, a unified SOTA image editing model capable of effec-tively handling diverse tasks including image fill, image extend, object removal, and text rendering. It surpasses several leading commercial and open-source systems, including Ideogram, Adobe Photoshop, and FLUX Fill [Pro]. Finally, based on FLUX Fill [dev], we are thrilled to release **FLUX.1-Fill-dev-OneReward**, which outperforms closed-source FLUX Fill [Pro] in inpainting and outpainting tasks, serving as a powerful new baseline for future research in unified image editing. |
|
|
|
<table> |
|
<tr> |
|
<td> |
|
<img src="assets/radius_inpaint.png" width="512"> |
|
<p align="center"><b>Image Fill</b></p> |
|
</td> |
|
<td> |
|
<img src="assets/radius_outpaint_w.png" width="512"> |
|
<p align="center"><b>Image Extend with Prompt</b></p> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td> |
|
<img src="assets/radius_outpaint_wo.png" width="512"> |
|
<p align="center"><b>Image Extend without Prompt</b></p> |
|
</td> |
|
<td> |
|
<img src="assets/radius_eraser.png" width="512"> |
|
<p align="center"><b>Object Removal</b></p> |
|
</td> |
|
</tr> |
|
<caption align="bottom" style="font-weight: bold; margin-top: 10px;">Seedream 3.0 Fill Performance Overview</caption> |
|
</table> |
|
|
|
## Quick Start |
|
|
|
1. Make sure your transformers>=4.51.3 (Supporting Qwen2.5-VL) |
|
|
|
2. Install the latest version of diffusers |
|
``` |
|
pip install -U diffusers |
|
``` |
|
|
|
The following contains a code snippet illustrating how to use the model to generate images based on text prompts and input mask, support inpaint(image-fill), outpaint(image-extend), eraser(object-removal). As the model is fully trained, FluxFillCFGPipeline with cfg is needed, you can find it in our github. |
|
|
|
```python |
|
import torch |
|
from diffusers.utils import load_image |
|
from diffusers import FluxTransformer2DModel |
|
|
|
from src.pipeline_flux_fill_with_cfg import FluxFillCFGPipeline |
|
|
|
transformer_onereward = FluxTransformer2DModel.from_pretrained( |
|
"bytedance-research/OneReward", |
|
subfolder="flux.1-fill-dev-OneReward-transformer", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
pipe = FluxFillCFGPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-Fill-dev", |
|
transformer=transformer_onereward, |
|
torch_dtype=torch.bfloat16).to("cuda") |
|
|
|
# Image Fill |
|
image = load_image('assets/image.png') |
|
mask = load_image('assets/mask_fill.png') |
|
image = pipe( |
|
prompt='the words "ByteDance", and in the next line "OneReward"', |
|
negative_prompt="nsfw", |
|
image=image, |
|
mask_image=mask, |
|
height=image.height, |
|
width=image.width, |
|
guidance_scale=1.0, |
|
true_cfg=4.0, |
|
num_inference_steps=50, |
|
generator=torch.Generator("cpu").manual_seed(0) |
|
).images[0] |
|
image.save(f"image_fill.jpg") |
|
``` |
|
|
|
<table> |
|
<tr> |
|
<td> |
|
<img src="assets/image.png" width="512"> |
|
<p align="center"><b>input</b></p> |
|
</td> |
|
<td> |
|
<img src="assets/result_fill.jpg" width="512"> |
|
<p align="center"><b>output</b></p> |
|
</td> |
|
</tr> |
|
</table> |
|
|
|
|
|
## Model |
|
### FLUX.1-Fill-dev[OneReward], trained with Alg.1 in paper |
|
```python |
|
transformer_onereward = FluxTransformer2DModel.from_pretrained( |
|
"bytedance-research/OneReward", |
|
subfolder="flux.1-fill-dev-OneReward-transformer", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
pipe = FluxFillCFGPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-Fill-dev", |
|
transformer=transformer_onereward, |
|
torch_dtype=torch.bfloat16).to("cuda") |
|
``` |
|
|
|
### FLUX.1-Fill-dev[OneRewardDynamic], trained with Alg.2 in paper |
|
```python |
|
transformer_onereward_dynamic = FluxTransformer2DModel.from_pretrained( |
|
"bytedance-research/OneReward", |
|
subfolder="flux.1-fill-dev-OneRewardDynamic-transformer", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
pipe = FluxFillCFGPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-Fill-dev", |
|
transformer=transformer_onereward_dynamic, |
|
torch_dtype=torch.bfloat16).to("cuda") |
|
``` |
|
|
|
### Object Removal |
|
```python |
|
image = load_image('assets/image.png') |
|
mask = load_image('assets/mask_remove.png') |
|
image = pipe( |
|
prompt='remove', # using fix prompt in object removal |
|
negative_prompt="nsfw", |
|
image=image, |
|
mask_image=mask, |
|
height=image.height, |
|
width=image.width, |
|
guidance_scale=1.0, |
|
true_cfg=4.0, |
|
num_inference_steps=50, |
|
generator=torch.Generator("cpu").manual_seed(0) |
|
).images[0] |
|
image.save(f"object_removal.jpg") |
|
``` |
|
|
|
### Image Extend with prompt |
|
```python |
|
image = load_image('assets/image2.png') |
|
mask = load_image('assets/mask_extend.png') |
|
image = pipe( |
|
prompt='Deep in the forest, surronded by colorful flowers', |
|
negative_prompt="nsfw", |
|
image=image, |
|
mask_image=mask, |
|
height=image.height, |
|
width=image.width, |
|
guidance_scale=1.0, |
|
true_cfg=4.0, |
|
num_inference_steps=50, |
|
generator=torch.Generator("cpu").manual_seed(0) |
|
).images[0] |
|
image.save(f"image_extend_w_prompt.jpg") |
|
``` |
|
|
|
### Image Extend without prompt |
|
```python |
|
image = load_image('assets/image2.png') |
|
mask = load_image('assets/mask_extend.png') |
|
image = pipe( |
|
prompt='high-definition, perfect composition', # using fix prompt in image extend wo prompt |
|
negative_prompt="nsfw", |
|
image=image, |
|
mask_image=mask, |
|
height=image.height, |
|
width=image.width, |
|
guidance_scale=1.0, |
|
true_cfg=4.0, |
|
num_inference_steps=50, |
|
generator=torch.Generator("cpu").manual_seed(0) |
|
).images[0] |
|
image.save(f"image_extend_wo_prompt.jpg") |
|
``` |
|
|
|
|
|
## License Agreement |
|
Code is licensed under Apache 2.0. Model is licensed under CC BY NC 4.0. |
|
|
|
## Citation |
|
``` |
|
@article{gong2025onereward, |
|
title={OneReward: Unified Mask-Guided Image Generation via Multi-Task Human Preference Learning}, |
|
author={Gong, Yuan and Wang, Xionghui and Wu, Jie and Wang, Shiyin and Wang, Yitong and Wu, Xinglong}, |
|
journal={arXiv preprint arXiv:2508.21066}, |
|
year={2025} |
|
} |
|
``` |