c-ho's picture
test_linsearch_only_abstract
4c2d7d3 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: test_linsearch_only_abstract
    results: []

test_linsearch_only_abstract

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2716
  • Accuracy: 0.6508
  • F1 Macro: 0.5942
  • Precision Macro: 0.6170
  • Recall Macro: 0.5858

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro Precision Macro Recall Macro
1.2232 1.0 2466 1.1574 0.6405 0.5484 0.5538 0.5608
1.0386 2.0 4932 1.0934 0.6497 0.5631 0.5712 0.5642
0.9215 3.0 7398 1.0725 0.6634 0.5933 0.5950 0.5970
0.8026 4.0 9864 1.0994 0.6532 0.5817 0.5905 0.5796
0.6754 5.0 12330 1.1462 0.6558 0.5838 0.5934 0.5806
0.5958 6.0 14796 1.2077 0.6537 0.5857 0.5963 0.5813
0.4924 7.0 17262 1.2716 0.6508 0.5942 0.6170 0.5858
0.4165 8.0 19728 1.3450 0.6450 0.5938 0.6037 0.5923
0.3599 9.0 22194 1.4048 0.6412 0.5906 0.6077 0.5812
0.3262 10.0 24660 1.4422 0.6389 0.5941 0.6032 0.5894

Framework versions

  • Transformers 4.50.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1