|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: test_linsearch_only_abstract |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test_linsearch_only_abstract |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2716 |
|
- Accuracy: 0.6508 |
|
- F1 Macro: 0.5942 |
|
- Precision Macro: 0.6170 |
|
- Recall Macro: 0.5858 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:---------------:|:------------:| |
|
| 1.2232 | 1.0 | 2466 | 1.1574 | 0.6405 | 0.5484 | 0.5538 | 0.5608 | |
|
| 1.0386 | 2.0 | 4932 | 1.0934 | 0.6497 | 0.5631 | 0.5712 | 0.5642 | |
|
| 0.9215 | 3.0 | 7398 | 1.0725 | 0.6634 | 0.5933 | 0.5950 | 0.5970 | |
|
| 0.8026 | 4.0 | 9864 | 1.0994 | 0.6532 | 0.5817 | 0.5905 | 0.5796 | |
|
| 0.6754 | 5.0 | 12330 | 1.1462 | 0.6558 | 0.5838 | 0.5934 | 0.5806 | |
|
| 0.5958 | 6.0 | 14796 | 1.2077 | 0.6537 | 0.5857 | 0.5963 | 0.5813 | |
|
| 0.4924 | 7.0 | 17262 | 1.2716 | 0.6508 | 0.5942 | 0.6170 | 0.5858 | |
|
| 0.4165 | 8.0 | 19728 | 1.3450 | 0.6450 | 0.5938 | 0.6037 | 0.5923 | |
|
| 0.3599 | 9.0 | 22194 | 1.4048 | 0.6412 | 0.5906 | 0.6077 | 0.5812 | |
|
| 0.3262 | 10.0 | 24660 | 1.4422 | 0.6389 | 0.5941 | 0.6032 | 0.5894 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.50.1 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.4.1 |
|
- Tokenizers 0.21.1 |
|
|