hw2advanced / README.md
coolseyungerm's picture
End of training
85fb7c6 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: hw2advanced
    results: []

hw2advanced

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2408
  • Precision: {'precision': 0.9067133278302073}
  • Recall: {'recall': 0.903472079391197}
  • F1: {'f1': 0.9050586148832505}
  • Accuracy: {'accuracy': 0.9160687311178247}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4744 1.0 1324 0.3413 {'precision': 0.8554480519619763} {'recall': 0.8395979020979021} {'f1': 0.8466159268992823} {'accuracy': 0.866786253776435}
0.3566 2.0 2648 0.2408 {'precision': 0.9067133278302073} {'recall': 0.903472079391197} {'f1': 0.9050586148832505} {'accuracy': 0.9160687311178247}

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2