whisper-medium-bigcgen-combined-25hrs-model

This model is a fine-tuned version of openai/whisper-medium on the bigcgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5052
  • Wer: 0.4134

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.75e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.9697 0.1219 200 0.8977 0.6518
3.2264 0.2438 400 0.7847 0.6096
2.9723 0.3657 600 0.7030 0.5395
2.9397 0.4877 800 0.6577 0.5325
2.5476 0.6096 1000 0.6216 0.4993
2.6317 0.7315 1200 0.5912 0.4900
2.4308 0.8534 1400 0.5791 0.4838
2.4843 0.9753 1600 0.5619 0.4738
1.7695 1.0969 1800 0.5714 0.4583
1.6794 1.2188 2000 0.5609 0.4493
2.0082 1.3407 2200 0.5456 0.4560
1.9617 1.4627 2400 0.5313 0.4204
1.5501 1.5846 2600 0.5262 0.4066
1.6704 1.7065 2800 0.5129 0.4163
1.5986 1.8284 3000 0.5097 0.4308
1.6337 1.9503 3200 0.5052 0.4134
0.9767 2.0719 3400 0.5273 0.4171
0.7662 2.1938 3600 0.5309 0.4162
1.0834 2.3158 3800 0.5203 0.4081

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
30
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for csikasote/whisper-medium-bigcgen-combined-25hrs-model

Finetuned
(560)
this model

Evaluation results