csikasote's picture
End of training
4fd11a8 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - bigcgen
metrics:
  - wer
model-index:
  - name: whisper-medium-bigcgen-combined-25hrs-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: bigcgen
          type: bigcgen
        metrics:
          - name: Wer
            type: wer
            value: 0.41335824381130315

whisper-medium-bigcgen-combined-25hrs-model

This model is a fine-tuned version of openai/whisper-medium on the bigcgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5052
  • Wer: 0.4134

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.75e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.9697 0.1219 200 0.8977 0.6518
3.2264 0.2438 400 0.7847 0.6096
2.9723 0.3657 600 0.7030 0.5395
2.9397 0.4877 800 0.6577 0.5325
2.5476 0.6096 1000 0.6216 0.4993
2.6317 0.7315 1200 0.5912 0.4900
2.4308 0.8534 1400 0.5791 0.4838
2.4843 0.9753 1600 0.5619 0.4738
1.7695 1.0969 1800 0.5714 0.4583
1.6794 1.2188 2000 0.5609 0.4493
2.0082 1.3407 2200 0.5456 0.4560
1.9617 1.4627 2400 0.5313 0.4204
1.5501 1.5846 2600 0.5262 0.4066
1.6704 1.7065 2800 0.5129 0.4163
1.5986 1.8284 3000 0.5097 0.4308
1.6337 1.9503 3200 0.5052 0.4134
0.9767 2.0719 3400 0.5273 0.4171
0.7662 2.1938 3600 0.5309 0.4162
1.0834 2.3158 3800 0.5203 0.4081

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0