Dataset Viewer (First 5GB)
Auto-converted to Parquet
Frame
int64
0
3.6k
ID
int64
908k
1.87M
Altitude
float64
0
2.02k
Speed
float64
0
641
Heading
float64
0
360
Lat
float64
38.8
42.4
Lon
float64
-77.06
-70.97
Range
float64
0
3.7
Bearing
float64
-3.14
3.14
Type
float64
0
2
Interp
stringclasses
2 values
x
float64
-3.26
3.03
y
float64
-2.41
3.04
0
1,647,431
12.5
17.4
199.688599
42.362574
-71.013703
0.422293
-2.307773
0
[ORG]
-0.283803
-0.31271
0
1,647,447
12.5
13
200.140137
42.366048
-71.01282
0.260769
-1.168553
0
[ORG]
0.102087
-0.239956
0
1,647,516
12.5
8.1
116.122742
42.36244
-71.010995
0.311852
-2.850075
0
[ORG]
-0.298694
-0.089628
0
1,647,517
12.5
9.6
320.03833
42.377686
-71.003398
1.494325
0.366918
0
[ORG]
1.394858
0.536075
0
1,647,483
12.5
0.865714
339.222217
42.373198
-71.018818
1.158501
-0.686116
0
[ORG]
0.896347
-0.733954
0
1,647,509
12.5
5.6
206.056274
42.360802
-71.01101
0.489158
-2.954747
0
[ORG]
-0.480644
-0.090866
0
1,647,546
12.5
0
177.909851
42.35505
-71.01716
1.269047
-2.651309
2
[ORG]
-1.119553
-0.597565
0
1,647,510
12.5
7.4
235.855591
42.355801
-71.017376
1.205083
-2.605674
2
[ORG]
-1.03613
-0.615353
1
1,647,516
12.5
8.3
115.93927
42.362424
-71.010945
0.312402
-2.864339
0
[ORG]
-0.300472
-0.085509
1
1,647,447
12.5
13
199.065674
42.365992
-71.012842
0.260082
-1.193292
0
[ORG]
0.095867
-0.241769
1
1,647,483
12.5
0.8
339.409424
42.3732
-71.018816
1.158569
-0.685885
0
[ORG]
0.896569
-0.733789
1
1,647,431
12.5
17.2
200.700439
42.362502
-71.013743
0.430125
-2.316393
0
[ORG]
-0.291801
-0.316005
1
1,647,510
12.5
7.6
238.874634
42.355785
-71.017422
1.208548
-2.603728
2
[ORG]
-1.037907
-0.619143
1
1,647,517
12.5
10
315.599854
42.377714
-71.003458
1.495466
0.363088
0
[ORG]
1.397968
0.531133
1
1,647,509
12.5
5.8
207.123047
42.360774
-71.011026
0.492459
-2.95329
0
[ORG]
-0.483754
-0.092184
1
1,647,546
12.5
0
177.865906
42.35505
-71.01716
1.269047
-2.651309
2
[ORG]
-1.119553
-0.597565
2
1,647,510
12.5
7.76
241.182861
42.355769
-71.01747
1.212103
-2.601677
2
[INT]
-1.039684
-0.623098
2
1,647,431
12.5
17.333333
199.794067
42.362422
-71.013775
0.438116
-2.327212
0
[INT]
-0.300687
-0.318642
2
1,647,517
12.5
10.6
311.042725
42.377742
-71.003526
1.496397
0.358851
0
[ORG]
1.401078
0.525533
2
1,647,509
12.5
5.866667
206.76709
42.36075
-71.011042
0.495325
-2.951683
0
[ORG]
-0.48642
-0.093503
2
1,647,546
12.5
0
177.867554
42.35505
-71.01716
1.269047
-2.651309
2
[INT]
-1.119553
-0.597565
2
1,647,447
12.5
12.6
197.370483
42.365938
-71.01286
0.259321
-1.216904
0
[ORG]
0.089868
-0.243252
2
1,647,483
12.5
0.7
339.755493
42.3732
-71.018818
1.158673
-0.685995
0
[ORG]
0.896569
-0.733954
2
1,647,516
12.5
8.3
114.355042
42.36241
-71.010897
0.312844
-2.877856
0
[INT]
-0.302027
-0.081555
3
1,647,509
12.5
5.6
206.166138
42.360728
-71.011052
0.497881
-2.950985
0
[ORG]
-0.488864
-0.094326
3
1,647,447
12.5
12.2
198.317505
42.36589
-71.01289
0.259858
-1.239448
0
[ORG]
0.084536
-0.245723
3
1,647,431
12.5
16.8
199.064575
42.36235
-71.013807
0.44554
-2.336206
0
[ORG]
-0.308685
-0.321278
3
1,647,516
12.5
7.8
114.850525
42.362394
-71.010855
0.313681
-2.889982
0
[ORG]
-0.303804
-0.078095
3
1,647,517
12.5
10.8
306.970093
42.37777
-71.003594
1.497355
0.354619
0
[ORG]
1.404188
0.519932
3
1,647,483
12.5
0.6
340.114746
42.3732
-71.018818
1.158673
-0.685995
0
[ORG]
0.896569
-0.733954
3
1,647,546
12.5
0
177.913696
42.35505
-71.01716
1.269047
-2.651309
2
[ORG]
-1.119553
-0.597565
3
1,647,510
12.5
7.88
243.150513
42.355757
-71.017522
1.215452
-2.599217
2
[ORG]
-1.041016
-0.627382
4
1,647,546
12.5
0
177.957642
42.35505
-71.01716
1.269047
-2.651309
2
[ORG]
-1.119553
-0.597565
4
1,647,447
12.5
12.4
200.630127
42.365834
-71.012924
0.260572
-1.265522
0
[ORG]
0.078316
-0.248524
4
1,647,510
12.5
7.96
244.850098
42.355747
-71.017572
1.218533
-2.596792
2
[ORG]
-1.042127
-0.631502
4
1,647,509
12.5
6
203.927124
42.3607
-71.011066
0.501154
-2.949901
0
[ORG]
-0.491974
-0.09548
4
1,647,431
12.5
16.6
197.714355
42.362276
-71.013833
0.452802
-2.346019
0
[ORG]
-0.316905
-0.323421
4
1,647,483
12.5
0.5
340.487183
42.3732
-71.018818
1.158673
-0.685995
0
[ORG]
0.896569
-0.733954
4
1,647,516
12.5
7.4
115.543762
42.36238
-71.010813
0.314348
-2.901874
0
[ORG]
-0.305359
-0.074635
4
1,647,517
12.5
10.6
303.499512
42.37779
-71.003654
1.497732
0.35101
0
[ORG]
1.406409
0.51499
5
1,647,483
12.5
0.4
340.871704
42.373202
-71.018818
1.158845
-0.685873
0
[ORG]
0.896791
-0.733954
5
1,647,509
12.5
6.8
201.232178
42.360664
-71.011078
0.505268
-2.949488
0
[ORG]
-0.495973
-0.096468
5
1,647,516
12.5
7.3
115.287231
42.362368
-71.01077
0.314825
-2.91381
0
[ORG]
-0.306692
-0.071093
5
1,647,510
12.5
8.04
246.86499
42.355744
-71.017624
1.221043
-2.593933
2
[ORG]
-1.04246
-0.635786
5
1,647,517
12.5
10.4
302.339355
42.377816
-71.00371
1.498867
0.347458
0
[ORG]
1.409297
0.510378
5
1,647,546
12.5
0
177.972473
42.35505
-71.01716
1.269047
-2.651309
2
[ORG]
-1.119553
-0.597565
5
1,647,447
12.5
12.6
202.452759
42.36578
-71.01296
0.261681
-1.290793
0
[ORG]
0.072318
-0.25149
5
1,647,431
12.5
16.3
196.779419
42.362202
-71.013858
0.460047
-2.355648
0
[ORG]
-0.325125
-0.32548
6
1,647,510
12.5
8.12
249.032593
42.355746
-71.017678
1.223176
-2.590733
2
[ORG]
-1.042237
-0.640235
6
1,647,447
12.5
12.3
203.485474
42.365728
-71.012992
0.262693
-1.3147
0
[ORG]
0.066542
-0.254126
6
1,647,483
12.5
0.3
341.270508
42.373202
-71.018818
1.158845
-0.685873
0
[ORG]
0.896791
-0.733954
6
1,647,509
12.5
7
199.677612
42.360634
-71.01109
0.508728
-2.948831
0
[ORG]
-0.499305
-0.097457
6
1,647,431
12.5
15.9
197.650635
42.362132
-71.01389
0.467422
-2.36343
0
[ORG]
-0.3329
-0.328117
6
1,647,546
12.5
0
177.958191
42.355048
-71.01716
1.269244
-2.651391
2
[ORG]
-1.119775
-0.597565
6
1,647,517
12.5
9.8
301.663696
42.377834
-71.003758
1.499407
0.344525
0
[ORG]
1.411296
0.506424
6
1,647,516
12.5
7.2
115.41687
42.362354
-71.01073
0.315616
-2.925093
0
[ORG]
-0.308248
-0.067798
7
1,647,483
12.5
0.2
341.451563
42.3732
-71.018818
1.158673
-0.685995
0
[ORG]
0.896569
-0.733954
7
1,647,447
12.5
12.5
204.047974
42.365674
-71.013026
0.263964
-1.339373
0
[ORG]
0.060544
-0.256927
7
1,647,546
12.5
0
177.857666
42.355046
-71.01716
1.26944
-2.651473
2
[ORG]
-1.119997
-0.597565
7
1,647,517
12.5
10
299.534546
42.377852
-71.003818
1.499629
0.340973
0
[ORG]
1.413295
0.501483
7
1,647,509
12.5
6.733333
199.830322
42.360604
-71.011104
0.512219
-2.947867
0
[ORG]
-0.502638
-0.09861
7
1,647,431
12.5
15.366667
199.494141
42.362072
-71.013924
0.474142
-2.36909
0
[ORG]
-0.339565
-0.330918
7
1,647,510
12.5
8.24
251.181519
42.355746
-71.017732
1.22551
-2.587639
2
[ORG]
-1.042237
-0.644684
7
1,647,516
12.5
7.6
116.323242
42.362334
-71.010682
0.316966
-2.938783
0
[ORG]
-0.310469
-0.063844
8
1,647,546
12.5
0
177.670898
42.355044
-71.01716
1.269636
-2.651556
2
[ORG]
-1.120219
-0.597565
8
1,647,431
12.5
15
202.714233
42.362016
-71.013966
0.481016
-2.372963
0
[ORG]
-0.345785
-0.334378
8
1,647,517
12.5
10.2
296.99231
42.377866
-71.003876
1.499506
0.337624
0
[ORG]
1.41485
0.496706
8
1,647,483
12.5
0.142222
341.524731
42.373198
-71.01882
1.158606
-0.686226
0
[ORG]
0.896347
-0.734118
8
1,647,510
12.5
8.4
253.059082
42.355742
-71.017786
1.228233
-2.584749
2
[ORG]
-1.042681
-0.649133
8
1,647,447
12.5
12.7
203.195435
42.365618
-71.013054
0.264864
-1.364232
0
[ORG]
0.054323
-0.259233
8
1,647,516
12.5
7.9
115.655273
42.36232
-71.01063
0.317658
-2.952979
0
[ORG]
-0.312024
-0.05956
8
1,647,509
12.5
7
198.932739
42.36057
-71.011118
0.516148
-2.947083
0
[ORG]
-0.506415
-0.099764
9
1,647,546
12.5
0
177.484131
42.355042
-71.01716
1.269832
-2.651638
2
[ORG]
-1.120441
-0.597565
9
1,647,483
12.5
0.126667
341.490015
42.373196
-71.018822
1.158538
-0.686458
0
[ORG]
0.896125
-0.734283
9
1,647,431
12.5
14.8
203.863403
42.361956
-71.014
0.487761
-2.378333
0
[ORG]
-0.35245
-0.33718
9
1,647,509
12.5
7
199.531494
42.36054
-71.011134
0.519672
-2.945834
0
[ORG]
-0.509747
-0.101082
9
1,647,510
12.5
8.6
254.546631
42.355734
-71.01784
1.231343
-2.582063
2
[ORG]
-1.043569
-0.653582
9
1,647,517
12.5
10.5
294.680786
42.377884
-71.003944
1.499548
0.333659
0
[ORG]
1.416849
0.491105
9
1,647,447
12.5
12.7
202.754883
42.365566
-71.013082
0.266008
-1.387265
0
[ORG]
0.048547
-0.26154
9
1,647,516
12.5
7.9
116.170532
42.3623
-71.010584
0.319157
-2.965947
0
[ORG]
-0.314246
-0.055771
10
1,647,510
12.5
8.735
255.615601
42.355724
-71.017894
1.234649
-2.579486
2
[ORG]
-1.044679
-0.658031
10
1,647,483
12.5
0.153333
341.348511
42.373194
-71.018822
1.158366
-0.686579
0
[ORG]
0.895902
-0.734283
10
1,647,516
12.5
7.7
119.897095
42.362274
-71.010548
0.3215
-2.976599
0
[ORG]
-0.317134
-0.052805
10
1,647,546
12.5
0
177.297363
42.35504
-71.01716
1.270028
-2.65172
2
[ORG]
-1.120663
-0.597565
10
1,647,431
12.5
14.9
204.450073
42.361894
-71.014036
0.494795
-2.383624
0
[ORG]
-0.359337
-0.340146
10
1,647,447
12.5
12.4
201.762817
42.365514
-71.013106
0.266966
-1.409892
0
[ORG]
0.042771
-0.263517
10
1,647,517
12.5
10.5
292.943848
42.377898
-71.004006
1.499355
0.330101
0
[ORG]
1.418404
0.485999
10
1,647,509
12.5
6.6
200.059937
42.360514
-71.01115
0.522762
-2.944435
0
[ORG]
-0.512635
-0.1024
11
1,647,509
12.5
6.6
199.395264
42.360486
-71.011162
0.526006
-2.94375
0
[ORG]
-0.515745
-0.103389
11
1,647,431
12.5
14.9
203.044922
42.36183
-71.014064
0.501554
-2.390027
0
[ORG]
-0.366446
-0.342453
11
1,647,510
12.5
8.805
256.435181
42.355716
-71.017948
1.237777
-2.576827
2
[ORG]
-1.045567
-0.66248
11
1,647,546
12.5
0
177.110596
42.35504
-71.01716
1.270028
-2.65172
2
[ORG]
-1.120663
-0.597565
11
1,647,516
12.5
8
125.542969
42.362244
-71.010512
0.324319
-2.987307
0
[ORG]
-0.320467
-0.049839
11
1,647,483
12.5
0.222222
341.10022
42.373194
-71.018822
1.158366
-0.686579
0
[ORG]
0.895902
-0.734283
11
1,647,517
12.5
10.6
291.785889
42.377918
-71.004072
1.499705
0.326192
0
[ORG]
1.420625
0.480563
11
1,647,447
12.5
12.3
202.4198
42.365468
-71.013138
0.268805
-1.430227
0
[ORG]
0.037661
-0.266154
12
1,647,447
12.5
12.1
202.95813
42.365418
-71.013166
0.270373
-1.451764
0
[ORG]
0.032107
-0.26846
12
1,647,431
12.5
15
201.684814
42.361762
-71.014094
0.508771
-2.396614
0
[ORG]
-0.373999
-0.344924
12
1,647,546
12.5
0
176.923828
42.35504
-71.01716
1.270028
-2.65172
2
[ORG]
-1.120663
-0.597565
12
1,647,516
12.5
7.8
131.961182
42.362214
-71.010488
0.327317
-2.99484
0
[ORG]
-0.323799
-0.047862
End of preview. Expand in Data Studio

Dataset Overview

The Amelia10 dataset provides air traffic position reports for 10 U.S. airports, including the following airports:

  • KBOS (Boston Logan International Airport)
  • KDCA (Washington National Airport)
  • KEWR (Newark Liberty International Airport)
  • KJFK (John F. Kennedy International Airport)
  • KLAX (Los Angeles International Airport)
  • KMDW (Chicago Midway International Airport)
  • KMSY (Louis Armstrong New Orleans International Airport)
  • KSEA (Seattle-Tacoma International Airport)
  • KSFO (San Francisco International Airport)
  • PANC (Ted Stevens Anchorage International Airport)

Given the challenges of raw position data, which can be irregularly sampled, noisy, and include tracks outside active movement areas, this dataset has being interpolated to ensure clean data.

Key Features

  • Geographic Filtering: Data is filtered using 3D geofences around each airport, including only reports within a 2000 ft altitude above ground level to focus on operationally relevant airspace.
  • Interpolation and Resampling: Position reports are interpolated and resampled at a uniform 1 Hz frequency to provide a consistent temporal resolution, ideal for training trajectory forecasting models.
  • Comprehensive Metadata: The dataset captures a wide range of attributes, including spatial, temporal, and kinematic information for each agent.
  • Diverse Sampling: Includes 15 randomly selected days per airport, covering a range of seasonal and operational conditions to enhance data representation.
  • Scalable Format: Data is provided in per-hour, per-airport CSV files for efficient processing, with over 8.43M unique agents and 1.10B position reports included.
Field Units Description
Frame # Timestamp
ID # STDDS Agent ID
Speed knots Agent Speed
Heading degrees Agent Heading
Lat decimal degs Latitude of the agent
Lon decimal degs Longitude of the agent
Interp boolean Interpolated data point flag
Altitude feet Agent Altitude (MSL)
Range km Distance from airport datum
Bearing rads Bearing Angle w.r.t. North
Type int Agent Type (0: A/C, 1: Veh, 2: Unk)
x km Local X Cartesian Position
y km Local Y Cartesian Position

Use Cases

This dataset is particularly well-suited for tasks like trajectory forecasting, anomaly detection, and air traffic pattern analysis.

Downloads last month
82