|
--- |
|
license: cc-by-4.0 |
|
task_categories: |
|
- image-text-to-text |
|
- image-feature-extraction |
|
language: |
|
- en |
|
tags: |
|
- pdf |
|
- ocr |
|
- legal |
|
- government |
|
size_categories: |
|
- 100K<n<1M |
|
dataset_info: |
|
- config_name: index |
|
features: |
|
- name: filename |
|
dtype: string |
|
- name: filepath |
|
dtype: string |
|
- name: broken_pdf |
|
dtype: bool |
|
- name: num_pages |
|
dtype: float64 |
|
- name: created_date |
|
dtype: string |
|
- name: modified_date |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: author |
|
dtype: string |
|
- name: subject |
|
dtype: string |
|
- name: file_size_mb |
|
dtype: float64 |
|
- name: error_message |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 39695484 |
|
num_examples: 229917 |
|
download_size: 19387703 |
|
dataset_size: 39695484 |
|
- config_name: sample |
|
features: |
|
- name: pdf |
|
dtype: pdf |
|
- name: num_pages |
|
dtype: float64 |
|
- name: created_date |
|
dtype: string |
|
- name: modified_date |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: author |
|
dtype: string |
|
- name: subject |
|
dtype: string |
|
- name: file_size_mb |
|
dtype: float64 |
|
- name: broken_pdf |
|
dtype: bool |
|
- name: error_message |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 879832.0 |
|
num_examples: 5000 |
|
download_size: 400528 |
|
dataset_size: 879832.0 |
|
configs: |
|
- config_name: index |
|
data_files: |
|
- split: train |
|
path: index/train-* |
|
- config_name: sample |
|
data_files: |
|
- split: train |
|
path: sample/train-* |
|
--- |
|
|
|
# govdocs1: source PDF files |
|
|
|
|
|
This is ~220,000 open-access PDF documents (about 6.6M pages) from the dataset [govdocs1](https://digitalcorpora.org/corpora/file-corpora/files/). It wants to be OCR'd. |
|
|
|
|
|
- Uploaded as `tar` file pieces of ~10 GiB each due to size/file count limits with an [index.csv](data/index.csv) covering details |
|
- 5,000 randomly sampled PDFs are available unarchived in `sample/`. Hugging Face supports previewing these in-browser, for example [this one](sample/001070.pdf) |
|
|
|
## Recovering the data |
|
|
|
Download the `data/` directory (with `huggingface-cli download` or similar) extract the tar pieces: |
|
|
|
```sh |
|
cat data_pdfs_part.tar.* | tar -xf - && rm data_pdfs_part.tar.* |
|
``` |
|
|
|
## processing details |
|
|
|
### duplicates |
|
|
|
exact duplicate PDFs were removed with `jdupes`. See the [log file](exact_duplicate_removal.log) for details. |
|
|
|
--- |
|
|
|
|
|
## By the numbers |
|
|
|
Based on the [index.csv](data/index.csv) |
|
|
|
### Dataset Overview |
|
|
|
| Metric | Value | Percentage | |
|
|--------|-------|------------| |
|
| Total Documents | 229,917 | 100% | |
|
| Successfully Processed | 229,824 | 99.96% | |
|
| Broken/Corrupted | 93 | 0.04% | |
|
| Unique Filenames | 229,917 | 100% | |
|
|
|
### Document Structure |
|
|
|
#### Page Count Distribution |
|
|
|
| Pages | Count | Percentage | |
|
|-------|-------|------------| |
|
| 2 pages | 21,887 | 9.5% | |
|
| 1 page | 19,282 | 8.4% | |
|
| 4 pages | 14,640 | 6.4% | |
|
| 3 pages | 12,861 | 5.6% | |
|
| 6 pages | 9,770 | 4.3% | |
|
|
|
| Statistic | Value | |
|
|-----------|-------| |
|
| **Range** | 1 - 3,200 pages | |
|
| **Mean** | 27.8 pages | |
|
| **Median** | 10 pages | |
|
| **Standard Deviation** | 67.9 pages | |
|
|
|
#### File Size Distribution |
|
|
|
| Size (MB) | Count | Percentage | |
|
|-----------|-------|------------| |
|
| 0.02 | 13,427 | 5.8% | |
|
| 0.03 | 12,142 | 5.3% | |
|
| 0.04 | 12,085 | 5.3% | |
|
| 0.05 | 11,850 | 5.2% | |
|
| 0.01 | 9,929 | 4.3% | |
|
|
|
| Statistic | Value | |
|
|-----------|-------| |
|
| **Range** | 0 - 68.83 MB | |
|
| **Mean** | 0.565 MB | |
|
| **Median** | 0.15 MB | |
|
| **Standard Deviation** | 1.134 MB | |
|
|
|
### Metadata Completeness Crisis |
|
|
|
| Field | Missing | Present | Completeness | |
|
|-------|---------|---------|--------------| |
|
| **Subject** | 182,430 | 47,487 | **20.6%** | |
|
| **Author** | 78,269 | 151,648 | **66.0%** | |
|
| **Title** | 51,514 | 178,403 | **77.6%** | |
|
| **Created Date** | 3,260 | 226,657 | **98.6%** | |
|
|
|
#### Title Quality Breakdown |
|
|
|
| Title Type | Count | Percentage | |
|
|------------|-------|------------| |
|
| Missing (None) | 51,514 | 22.4% | |
|
| Generic "Document" | 11,699 | 5.1% | |
|
| "untitled" | 2,081 | 0.9% | |
|
| Meaningful titles | ~165,000 | 71.6% | |
|
|
|
#### Top Authors |
|
|
|
| Author | Count | |
|
|--------|-------| |
|
| U.S. Government Printing Office | 11,838 | |
|
| Unknown | 3,477 | |
|
| Administrator | 1,630 | |
|
| U.S. Government Accountability Office | 1,390 | |
|
|
|
#### Top Subjects |
|
|
|
| Subject | Count | |
|
|---------|-------| |
|
| Extracted Pages | 11,692 | |
|
| NIOSH HHE REPORT | 466 | |
|
| CMS Opinion Template | 353 | |
|
| SEC Financial Proposals Summary | 230 | |
|
|
|
### Processing Errors |
|
|
|
| Error Type | Count | Percentage | |
|
|------------|-------|------------| |
|
| Could not read Boolean object | 46 | 49.5% | |
|
| cryptography>=3.1 required for AES | 15 | 16.1% | |
|
| Stream ended unexpectedly | 9 | 9.7% | |
|
| 'NullObject' has no attribute 'get' | 5 | 5.4% | |
|
| Other errors | 18 | 19.4% | |
|
|
|
### Temporal Coverage |
|
|
|
| Date Field | Range | Issues | |
|
|------------|-------|--------| |
|
| **Modified Date** | 1979-12-31 to 2025-03-31 | (dates in 2023-2025 are incorrect/defaulted to) | |
|
| **Created Date** | Various formats | 1,573 invalid "D:00000101000000Z" | |
|
|
|
### Critical Assessment |
|
|
|
> [!NOTE] |
|
> Generated by Claude Sonnet-4, unsolicited (_as always_) |
|
|
|
#### Data Quality Issues |
|
|
|
| Issue | Severity | Impact | |
|
|-------|----------|---------| |
|
| **Metadata Poverty** | **CRITICAL** | 79% missing subjects kills discoverability | |
|
| **Title Degradation** | **HIGH** | 28% generic/missing titles | |
|
| **Date Inconsistencies** | **MEDIUM** | Invalid formats, future dates | |
|
| **Processing Errors** | **LOW** | 0.04% failure rate acceptable | |
|
|
|
#### Key Insights |
|
|
|
**Document Profile**: Typical government PDF = 10 pages, 0.15 MB, metadata-poor |
|
|
|
**Fatal Flaw**: This dataset has excellent technical extraction (99.96% success) but catastrophic intellectual organization. You're essentially working with 230K unlabeled documents. |
|
|
|
**Bottom Line**: The structural data is solid, but without subject classification for 79% of documents, this is an unindexed digital landfill masquerading as an archive. |
|
|
|
--- |