Datasets:
Modalities:
Image
Languages:
English
Size:
10K<n<100K
Tags:
computer-vision
3d-reconstruction
subsurface-scattering
gaussian-splatting
inverse-rendering
photometric-stereo
License:
File size: 7,657 Bytes
0b36675 355a987 0b36675 355a987 0b36675 1ecdaee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
language:
- en
pretty_name: "Light-Stage OLAT Subsurface-Scattering Dataset"
tags:
- computer-vision
- 3d-reconstruction
- subsurface-scattering
- gaussian-splatting
- inverse-rendering
- photometric-stereo
- light-stage
- olat
- multi-view
- multi-light
- image
license: "other"
task_categories:
- image-to-3d
- other
size_categories:
- 10K<n<100K
dataset_info:
features:
- name: image
dtype: image
- name: camera_pose
dtype: json
- name: light_pose
dtype: json
- name: mask
dtype: image
splits:
- name: train
num_bytes: 30000000000
num_examples: 30000
- name: test
num_bytes: 7000000000
num_examples: 7000
download_size: 30000000000
dataset_size: 37000000000
configs:
- config_name: real_world
data_files:
- split: train
path: real_world/*/transforms_train.json
- split: test
path: real_world/*/transforms_test.json
- config_name: synthetic
data_files:
- split: train
path: synthetic/*_full/transforms_train.json
- split: test
path: synthetic/*_full/transforms_test.json
- config_name: synthetic_small
data_files:
- split: train
path: synthetic/*_small/transforms_train.json
- split: test
path: synthetic/*_small/transforms_test.json
- split: eval
path: synthetic/*_small/transforms_eval.json
---
# 🕯️ Light-Stage OLAT Subsurface-Scattering Dataset
*Companion data for the paper **"Subsurface Scattering for 3D Gaussian Splatting"***
> **This README documents *only the dataset*.**
> A separate repo covers the training / rendering **code**: <https://github.com/cgtuebingen/SSS-GS>
<p align="center">
<img src="other/dataset.png" width="80%" alt="Dataset overview"/>
</p>
## Overview
Subsurface scattering (SSS) gives translucent materials (wax, soap, jade, skin) their distinctive soft glow. Our paper introduces **SSS-GS**, the first 3D Gaussian-Splatting framework that *jointly* reconstructs shape, BRDF and volumetric SSS while running at real-time framerates. Training such a model requires dense **multi-view ⇄ multi-light OLAT** data.
This dataset delivers exactly that:
* **25 objects** – 20 captured on a physical light-stage, 5 rendered in a synthetic stage
* **> 37k images** (≈ 1 TB raw / ≈ 30 GB processed) with **known camera & light poses**
* Ready-to-use JSON transform files compatible with NeRF & 3D GS toolchains
* Processed to 800 px images + masks; **raw 16 MP capture** available on request
### Applications
* Research on SSS, inverse-rendering, radiance-field relighting, differentiable shading
* Benchmarking OLAT pipelines or light-stage calibration
* Teaching datasets for photometric 3D reconstruction
## Quick Start
```bash
# Download and extract one real-world object
curl -L https://…/real_world/candle.tar | tar -x
```
## Directory Layout
```
dataset_root/
├── real_world/ # Captured objects (processed, ready to train)
│ └── <object>.tar # Each tar = one object (≈ 4–8 GB)
└── synthetic/ # Procedurally rendered objects
├── <object>_full/ # full-resolution (800 px)
└── <object>_small/ # 256 px "quick-train" version
```
### Inside a **real-world** tar
```
<object>/
├── resized/ # θ_φ_board_i.png (≈ 800 × 650 px)
├── transforms_train.json # (train-set only) ⇄ camera / light metadata
├── transforms_test.json # (test-set only) ⇄ camera / light metadata
├── light_positions.json # all θ_φ_board_i → (x,y,z)
├── exclude_list.json # bad views (lens flare, matting error, …)
└── cam_lights_aligned.png # sanity-check visualisation
```
*Raw capture* Full-resolution, unprocessed RGB-bayer images (~ 1 TB per object) are kept offline—contact us to arrange transfer.
### Inside a **synthetic** object folder
```
<object>_full/
├── <object>.blend # Blender scene with 112 HDR stage lights
├── train/ # r_<cam>_l_<light>.png (= 800 × 800 px)
├── test/ # r_<cam>_l_<light>.png (= 800 × 800 px)
├── eval/ # only in "_small" subsets
├── transforms_train.json # (train-set only) ⇄ camera / light metadata
└── transforms_test.json # (test-set only) ⇄ camera / light metadata
```
The *small* variant differs only in image resolution & optional `eval/`.
## Data Collection
### Real-World Subset
**Capture Setup:**
- **Stage**: 4 m diameter light-stage with 167 individually addressable LEDs
- **Camera**: FLIR Oryx 12 MP with 35 mm F-mount, motorized turntable & vertical rail
- **Processing**: COLMAP SfM, automatic masking (SAM + ViTMatte), resize → PNG
| Objects | Avg. Views | Lights/View | Resolution | Masks |
|---------|------------|-------------|------------|-------|
| 20 | 158 | 167 | 800×650 px | α-mattes |
<p align="center">
<img src="other/preprocessing.png" width="60%" alt="Preprocessing pipeline"/>
</p>
### Synthetic Subset
**Rendering Setup:**
- **Models**: Stanford 3D Scans and BlenderKit
- **Renderer**: Blender Cycles with spectral SSS (Principled BSDF)
- **Lights**: 112 positions (7 rings × 16), 200 test cameras on NeRF spiral path
| Variant | Images | Views × Lights | Resolution | Notes |
|---------|--------|----------------|------------|-------|
| _full | 11,200 | 100 × 112 | 800² | Filmic tonemapping |
| _small | 1,500 | 15 × 100 | 256² | Quick prototyping |
## File & Naming Conventions
* **Real images** `theta_<θ>_phi_<φ>_board_<id>.png`
*θ, φ* in degrees; *board* 0-195 indexes the LED PCBs.
* **Synthetic images** `r_<camera>_l_<light>.png`
* **JSON schema**
```jsonc
{
"camera_angle_x": 0.3558,
"frames": [{
"file_paths": ["resized/theta_10.0_phi_0.0_board_1", …],
"light_positions": [[x,y,z], …], // metres, stage origin
"transform_matrix": [[...], ...], // 4×4 extrinsic
"width": 800, "height": 650, "cx": 400.0, "cy": 324.5
}]
}
```
For synthetic files: identical structure, naming `r_<cam>_l_<light>`.
## Licensing & Third-Party Assets
| Asset | Source | License / Note |
|-------|--------|----------------|
| Synthetic models | [Stanford 3-D Scans](https://graphics.stanford.edu/data/3Dscanrep/) | Varies (non-commercial / research) |
| | [BlenderKit](https://www.blenderkit.com/) | CC-0, CC-BY or Royalty-Free (check per-asset page) |
| HDR env-maps | [Poly Haven](https://polyhaven.com/) | CC-0 |
| Code | MIT (see repo) |
The dataset is released **for non-commercial research and educational use**.
If you plan to redistribute or use individual synthetic assets commercially, verify the upstream license first.
## Citation
If you use this dataset, please cite the paper:
```bibtex
@inproceeding{sss_gs,
author = {Dihlmann, Jan-Niklas and Majumdar, Arjun and Engelhardt, Andreas and Braun, Raphael and Lensch, Hendrik P.A.},
booktitle = {Advances in Neural Information Processing Systems},
editor = {A. Globerson and L. Mackey and D. Belgrave and A. Fan and U. Paquet and J. Tomczak and C. Zhang},
pages = {121765--121789},
publisher = {Curran Associates, Inc.},
title = {Subsurface Scattering for Gaussian Splatting},
url = {https://proceedings.neurips.cc/paper_files/paper/2024/file/dc72529d604962a86b7730806b6113fa-Paper-Conference.pdf},
volume = {37},
year = {2024}
}
```
## Contact & Acknowledgements
Questions, raw-capture requests, or pull-requests?
📧 `jan-niklas.dihlmann (at) uni-tuebingen.de`
This work was funded by DFG (EXC 2064/1, SFB 1233) and the Tübingen AI Center.
|