|
import networkx as nx |
|
import os |
|
import pathlib |
|
import pickle |
|
|
|
DESCRIPTION = '''The Maximum Independent Set (MIS) problem is a fundamental NP-hard optimization problem in graph theory. Given an undirected graph G = (V, E), where V is a set of vertices and E is a set of edges, the goal is to find the largest subset S ⊆ V such that no two vertices in S are adjacent (i.e., connected by an edge).''' |
|
|
|
|
|
def solve(**kwargs): |
|
""" |
|
Solve the Maximum Independent Set problem for a given test case. |
|
|
|
Input: |
|
kwargs (dict): A dictionary with the following keys: |
|
- graph (networkx.Graph): The graph to solve |
|
|
|
Returns: |
|
dict: A solution dictionary containing: |
|
- mis_nodes (list): List of node indices in the maximum independent set |
|
""" |
|
|
|
|
|
|
|
|
|
while True: |
|
yield { |
|
'mis_nodes': [0, 1, ...], |
|
} |
|
|
|
|
|
def load_data(file_path): |
|
""" |
|
Load test data for MIS problem |
|
|
|
Args: |
|
file_path (str or pathlib.Path): Path to the file |
|
|
|
Returns: |
|
dict: A dictionary containing a test case with graph data |
|
""" |
|
file_path = pathlib.Path(file_path) |
|
|
|
if not file_path.exists(): |
|
raise FileNotFoundError(f"File not found: {file_path}") |
|
|
|
if file_path.suffix != '.mis': |
|
raise ValueError(f"Expected .dimacs file, got {file_path.suffix}") |
|
|
|
try: |
|
|
|
G = nx.Graph() |
|
|
|
with open(file_path, 'r') as f: |
|
lines = f.readlines() |
|
|
|
for line in lines: |
|
line = line.strip() |
|
|
|
|
|
if not line: |
|
continue |
|
|
|
|
|
parts = line.split() |
|
|
|
|
|
if parts[0] == 'p' and parts[1] == 'edge': |
|
num_nodes = int(parts[2]) |
|
|
|
G.add_nodes_from(range(1, num_nodes + 1)) |
|
|
|
|
|
elif parts[0] == 'e': |
|
node1 = int(parts[1]) |
|
node2 = int(parts[2]) |
|
G.add_edge(node1, node2) |
|
|
|
|
|
test_case = { |
|
'graph': G |
|
} |
|
|
|
return [test_case] |
|
|
|
except Exception as e: |
|
raise Exception(f"Error loading graph from {file_path}: {e}") |
|
|
|
|
|
def eval_func(**kwargs): |
|
""" |
|
Evaluate a Maximum Independent Set solution for correctness. |
|
|
|
Args: |
|
name (str): Name of the test case |
|
graph (networkx.Graph): The graph that was solved |
|
mis_nodes (list): List of nodes claimed to be in the maximum independent set |
|
mis_size (int): Claimed size of the maximum independent set |
|
|
|
Returns: |
|
dict: Evaluation results containing: |
|
- is_valid (bool): Whether the solution is a valid independent set |
|
- actual_size (int): The actual size of the provided solution |
|
- score (int): The score of the solution (0 if invalid, actual_size if valid) |
|
- error (str, optional): Error message if any constraint is violated |
|
""" |
|
|
|
graph = kwargs['graph'] |
|
mis_nodes = kwargs['mis_nodes'] |
|
|
|
|
|
if not isinstance(mis_nodes, list): |
|
raise Exception("mis_nodes must be a list") |
|
|
|
|
|
node_set = set(graph.nodes()) |
|
for node in mis_nodes: |
|
if node not in node_set: |
|
raise Exception(f"Node {node} in solution does not exist in graph") |
|
|
|
|
|
if len(mis_nodes) != len(set(mis_nodes)): |
|
raise Exception("Duplicate nodes in solution") |
|
|
|
|
|
actual_size = len(mis_nodes) |
|
|
|
|
|
for i in range(len(mis_nodes)): |
|
for j in range(i + 1, len(mis_nodes)): |
|
if graph.has_edge(mis_nodes[i], mis_nodes[j]): |
|
raise Exception(f"Not an independent set: edge exists between {mis_nodes[i]} and {mis_nodes[j]}") |
|
|
|
return actual_size |
|
|
|
def norm_score(results): |
|
optimal_scores = {'easy_test_instances/C1000.9.mis': [68.0], 'easy_test_instances/C125.9.mis': [34.0], 'easy_test_instances/C2000.5.mis': [16.0], 'easy_test_instances/C2000.9.mis': [80.0], 'easy_test_instances/C250.9.mis': [44.0], 'easy_test_instances/C4000.5.mis': [18.0], 'easy_test_instances/C500.9.mis': [57.0], 'easy_test_instances/DSJC1000.5.mis': [15.0], 'easy_test_instances/DSJC500.5.mis': [13.0], 'easy_test_instances/MANN_a27.mis': [126.0], 'easy_test_instances/MANN_a45.mis': [345.0], 'easy_test_instances/MANN_a81.mis': [1100.0], 'easy_test_instances/brock200_2.mis': [12.0], 'easy_test_instances/brock200_4.mis': [17.0], 'easy_test_instances/brock400_2.mis': [29.0], 'easy_test_instances/brock400_4.mis': [33.0], 'easy_test_instances/brock800_2.mis': [24.0], 'easy_test_instances/brock800_4.mis': [26.0], 'easy_test_instances/gen200_p0.9_44.mis': [44.0], 'easy_test_instances/gen200_p0.9_55.mis': [55.0], 'easy_test_instances/gen400_p0.9_55.mis': [55.0], 'easy_test_instances/gen400_p0.9_65.mis': [65.0], 'easy_test_instances/gen400_p0.9_75.mis': [75.0], 'easy_test_instances/hamming10-4.mis': [40.0], 'easy_test_instances/hamming8-4.mis': [16.0], 'easy_test_instances/keller4.mis': [11.0], 'easy_test_instances/keller5.mis': [27.0], 'easy_test_instances/keller6.mis': [59.0], 'easy_test_instances/p_hat1500-1.mis': [12.0], 'easy_test_instances/p_hat1500-2.mis': [65.0], 'easy_test_instances/p_hat1500-3.mis': [94.0], 'easy_test_instances/p_hat300-1.mis': [8.0], 'easy_test_instances/p_hat300-2.mis': [25.0], 'easy_test_instances/p_hat300-3.mis': [36.0], 'easy_test_instances/p_hat700-1.mis': [11.0], 'easy_test_instances/p_hat700-2.mis': [44.0], 'easy_test_instances/p_hat700-3.mis': [62.0]} |
|
optimal_scores = optimal_scores | {'hard_test_instances/frb100-40.mis': [98.0], 'hard_test_instances/frb50-23-1.mis': [50.0], 'hard_test_instances/frb50-23-2.mis': [50.0], 'hard_test_instances/frb50-23-3.mis': [50.0], 'hard_test_instances/frb50-23-4.mis': [50.0], 'hard_test_instances/frb50-23-5.mis': [50.0], 'hard_test_instances/frb53-24-1.mis': [53.0], 'hard_test_instances/frb53-24-2.mis': [53.0], 'hard_test_instances/frb53-24-3.mis': [53.0], 'hard_test_instances/frb53-24-4.mis': [53.0], 'hard_test_instances/frb53-24-5.mis': [53.0], 'hard_test_instances/frb59-26-1.mis': [59.0], 'hard_test_instances/frb59-26-2.mis': [59.0], 'hard_test_instances/frb59-26-3.mis': [59.0], 'hard_test_instances/frb59-26-4.mis': [59.0], 'hard_test_instances/frb59-26-5.mis': [59.0]} |
|
optimal_scores = optimal_scores | {'valid_instances/RB_800_1200_0.mis': [47.0], 'valid_instances/RB_800_1200_1.mis': [50.0], 'valid_instances/RB_800_1200_10.mis': [37.0], 'valid_instances/RB_800_1200_11.mis': [50.0], 'valid_instances/RB_800_1200_12.mis': [49.0], 'valid_instances/RB_800_1200_13.mis': [44.0], 'valid_instances/RB_800_1200_14.mis': [41.0], 'valid_instances/RB_800_1200_15.mis': [45.0], 'valid_instances/RB_800_1200_16.mis': [43.0], 'valid_instances/RB_800_1200_17.mis': [40.0], 'valid_instances/RB_800_1200_18.mis': [40.0], 'valid_instances/RB_800_1200_19.mis': [36.0], 'valid_instances/RB_800_1200_2.mis': [36.0], 'valid_instances/RB_800_1200_3.mis': [50.0], 'valid_instances/RB_800_1200_4.mis': [44.0], 'valid_instances/RB_800_1200_5.mis': [47.0], 'valid_instances/RB_800_1200_6.mis': [45.0], 'valid_instances/RB_800_1200_7.mis': [38.0], 'valid_instances/RB_800_1200_8.mis': [38.0], 'valid_instances/RB_800_1200_9.mis': [50.0]} |
|
|
|
normed = {} |
|
for case, (scores, error_message) in results.items(): |
|
if case not in optimal_scores: |
|
continue |
|
optimal_list = optimal_scores[case] |
|
normed_scores = [] |
|
|
|
for idx, score in enumerate(scores): |
|
if isinstance(score, (int, float)): |
|
normed_scores.append(1 - abs(score - optimal_list[idx]) / max(score, optimal_list[idx])) |
|
else: |
|
normed_scores.append(score) |
|
normed[case] = (normed_scores, error_message) |
|
|
|
return normed |
|
|