language:
- en
- hi
license: cc-by-nc-sa-4.0
size_categories:
- 1K<n<10K
task_categories:
- table-question-answering
- visual-question-answering
- image-text-to-text
tags:
- cricket
configs:
- config_name: default
data_files:
- split: test_single
path: data/test_single-*
- split: test_multi
path: data/test_multi-*
dataset_info:
features:
- name: id
dtype: string
- name: images
sequence: image
- name: question
dtype: string
- name: answer
dtype: string
- name: category
dtype: string
- name: subset
dtype: string
splits:
- name: test_single
num_bytes: 976385438
num_examples: 2000
- name: test_multi
num_bytes: 904538778
num_examples: 997
download_size: 1573738795
dataset_size: 1880924216
MMCricBench ๐
Multimodal Cricket Scorecard Benchmark for VQA
This repository contains the dataset for the paper Mind the (Language) Gap: Towards Probing Numerical and Cross-Lingual Limits of LVLMs.
MMCricBench evaluates Large Vision-Language Models (LVLMs) on numerical reasoning, cross-lingual understanding, and multi-image reasoning over semi-structured cricket scorecard images. It includes English and Hindi scorecards; all questions/answers are in English.
Overview
- Images: 1,463 synthetic scorecards (PNG)
- 822 single-image scorecards
- 641 multi-image scorecards
- QA pairs: 1,500 (English)
- Reasoning categories:
- C1 โ Direct retrieval & simple inference
- C2 โ Basic arithmetic & conditional logic
- C3 โ Multi-step quantitative reasoning (often across images)
Files / Splits
We provide two evaluation splits:
test_single
โ single-image questionstest_multi
โ multi-image questions
If you keep a single JSONL (e.g.,
test_all.jsonl
), use a list forimages
in every row. Single-image rows should have a one-element list. On the Hub, we expose two test splits.
Data Schema
Each row is a JSON object:
Field | Type | Description |
---|---|---|
id |
string |
Unique identifier |
images |
list[string] |
Paths to one or more scorecard images |
question |
string |
Question text (English) |
answer |
string |
Ground-truth answer (canonicalized) |
category |
string (C1/C2/C3 ) |
Reasoning category |
subset * |
string (single/multi ) |
Optional convenience field |
Example (single-image):
{"id":"english-single-9","images":["English-apr/single_image/1198246_2innings_with_color1.png"],"question":"Which bowler has conceded the most extras?","answer":"Wahab Riaz","category":"C2","subset":"single"}
Loading & Preview
Load from the Hub (two-split layout)
from datasets import load_dataset
# Loads: DatasetDict({'test_single': ..., 'test_multi': ...})
ds = load_dataset("DIALab/MMCricBench")
print(ds)
# Peek a single-image example
ex = ds["test_single"][0]
print(ex["id"])
print(ex["question"], "->", ex["answer"])
# Preview images (each example stores a list of PIL images)
from IPython.display import display
for img in ex["images"]:
display(img)
Baseline Results (from the paper)
Accuracy (%) on MMCricBench by split and language.
Model | #Params | Single-EN (Avg) | Single-HI (Avg) | Multi-EN (Avg) | Multi-HI (Avg) |
---|---|---|---|---|---|
SmolVLM | 500M | 19.2 | 19.0 | 11.8 | 11.6 |
Qwen2.5VL | 3B | 40.2 | 33.3 | 31.2 | 22.0 |
LLaVA-NeXT | 7B | 28.3 | 26.6 | 16.2 | 14.8 |
mPLUG-DocOwl2 | 8B | 20.7 | 19.9 | 15.2 | 14.4 |
Qwen2.5VL | 7B | 49.1 | 42.6 | 37.0 | 32.2 |
InternVL-2 | 8B | 29.4 | 23.4 | 18.6 | 18.2 |
Llama-3.2-V | 11B | 27.3 | 24.8 | 26.2 | 20.4 |
GPT-4o | โ | 57.3 | 45.1 | 50.6 | 43.6 |
Numbers are exact-match accuracy (higher is better). For C1/C2/C3 breakdowns, see Table 3 (single-image) and Table 5 (multi-image) in the paper.
Contact
For questions or issues, please open a discussion on the dataset page or email Abhirama Subramanyam at [email protected]