Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 3,666 Bytes
bd82992 b1d8def bd82992 b1d8def bd82992 b1d8def bd82992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
license: mit
task_categories:
- image-classification
language:
- en
---
# MUFAC (Machine Unlearning for Facial Age Classifier)
[](https://arxiv.org/abs/2311.02240)
This repository provides a **cleaned and resolution-aligned (128x128) version** of the MUFAC benchmark dataset.
---
## π Description
A multi-class age classification dataset featuring over 86,000 Asian facial images with annotations for age groups and personal identities.
<img src="https://raw.githubusercontent.com/ndb796/MachineUnlearning/main/resources/MUFAC.png" width="700" alt="MUFAC examples"/>
- Preprocessed facial images (128Γ128 resolution)
- CSV files (`custom_train_dataset.csv`, etc.) for structured training/evaluation
- Separation of identity-forgettable vs. retained images (`forget_images`, `retain_images`)
- Suitable for benchmarking **machine unlearning** algorithms, especially in **task-agnostic setups**
It is specifically intended for experiments where **personal identities are selectively unlearned**, without degrading model utility on the original task (e.g., age classification).
---
## ποΈ Dataset Structure
```
MUFAC/
βββ forget_images/ # 1,500 images to be unlearned
βββ retain_images/ # 8,525 images to retain
βββ train_images_part1/ # 9,999 training images (part 1)
βββ train_images_part2/ # 26 training images (part 2)
βββ val_images/ # 1,539 validation images
βββ test_images/ # 4,513 test images
βββ fixed_test_dataset_negative/ # 5,000 identity-balanced test data (negative)
βββ fixed_test_dataset_positive/ # 5,000 identity-balanced test data (positive)
βββ fixed_val_dataset_negative/ # 5,000 identity-balanced val data (negative)
βββ fixed_val_dataset_positive/ # 5,000 identity-balanced val data (positive)
βββ custom_train_dataset.csv # CSV with image paths and labels
βββ custom_val_dataset.csv # Validation CSV
βββ custom_test_dataset.csv # Test CSV
```
- CSV files follow the format: `image_path`, `age_group`, `identity`, `forget_flag`, etc.
- All image paths are relative and usable with `datasets.Image()` or `PIL`.
---
## πΉ How to Use
### Method 1: Git Clone (Recommended)
```python
git lfs install
git clone https://huggingface.co/datasets/Dasool/MUFAC
cd MUFAC
```
### Method 2: Using Hugging Face Hub API
```
from huggingface_hub import snapshot_download
# Download entire dataset
local_dir = snapshot_download("Dasool/MUFAC", repo_type="dataset")
print(f"Dataset downloaded to: {local_dir}")
```
### Method 3: Load CSV and Images
```
import pandas as pd
import os
from PIL import Image
# Load CSV
df = pd.read_csv("MUFAC/custom_train_dataset.csv")
print(f"Dataset size: {len(df)} samples")
print(df.head())
# Load sample image
sample_row = df.iloc[0]
img_path = os.path.join("MUFAC", sample_row["image_path"])
img = Image.open(img_path)
img.show()
```
---
## π Citation
This dataset is part of the benchmark suite introduced in the following paper:
```bibtex
@misc{choi2023machine,
title={Towards Machine Unlearning Benchmarks: Forgetting the Personal Identities in Facial Recognition Systems},
author={Dasol Choi and Dongbin Na},
year={2023},
eprint={2311.02240},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
- π Code for Experiments:: [https://github.com/ndb796/MachineUnlearning](https://github.com/ndb796/MachineUnlearning)
- π§ Contact: [email protected] |