File size: 3,666 Bytes
bd82992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8def
 
bd82992
 
 
 
 
 
b1d8def
bd82992
 
 
 
 
 
 
b1d8def
bd82992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: mit
task_categories:
- image-classification
language:
- en
---

# MUFAC (Machine Unlearning for Facial Age Classifier)

[![arXiv](https://img.shields.io/badge/arXiv-2311.02240-b31b1b.svg)](https://arxiv.org/abs/2311.02240)

This repository provides a **cleaned and resolution-aligned (128x128) version** of the MUFAC benchmark dataset.

---

## πŸ“˜ Description

A multi-class age classification dataset featuring over 86,000 Asian facial images with annotations for age groups and personal identities.

<img src="https://raw.githubusercontent.com/ndb796/MachineUnlearning/main/resources/MUFAC.png" width="700" alt="MUFAC examples"/>

- Preprocessed facial images (128Γ—128 resolution)
- CSV files (`custom_train_dataset.csv`, etc.) for structured training/evaluation
- Separation of identity-forgettable vs. retained images (`forget_images`, `retain_images`)
- Suitable for benchmarking **machine unlearning** algorithms, especially in **task-agnostic setups**

It is specifically intended for experiments where **personal identities are selectively unlearned**, without degrading model utility on the original task (e.g., age classification).

---

## πŸ—‚οΈ Dataset Structure
```
MUFAC/
β”œβ”€β”€ forget_images/                     # 1,500 images to be unlearned
β”œβ”€β”€ retain_images/                     # 8,525 images to retain
β”œβ”€β”€ train_images_part1/                # 9,999 training images (part 1)
β”œβ”€β”€ train_images_part2/                # 26 training images (part 2)
β”œβ”€β”€ val_images/                        # 1,539 validation images
β”œβ”€β”€ test_images/                       # 4,513 test images
β”œβ”€β”€ fixed_test_dataset_negative/       # 5,000 identity-balanced test data (negative)
β”œβ”€β”€ fixed_test_dataset_positive/       # 5,000 identity-balanced test data (positive)
β”œβ”€β”€ fixed_val_dataset_negative/        # 5,000 identity-balanced val data (negative)
β”œβ”€β”€ fixed_val_dataset_positive/        # 5,000 identity-balanced val data (positive)
β”œβ”€β”€ custom_train_dataset.csv           # CSV with image paths and labels
β”œβ”€β”€ custom_val_dataset.csv             # Validation CSV
└── custom_test_dataset.csv            # Test CSV
```
- CSV files follow the format: `image_path`, `age_group`, `identity`, `forget_flag`, etc.
- All image paths are relative and usable with `datasets.Image()` or `PIL`.

---
## πŸ”Ή How to Use

### Method 1: Git Clone (Recommended)
```python
git lfs install
git clone https://huggingface.co/datasets/Dasool/MUFAC
cd MUFAC
```

###  Method 2: Using Hugging Face Hub API
```
from huggingface_hub import snapshot_download

# Download entire dataset
local_dir = snapshot_download("Dasool/MUFAC", repo_type="dataset")
print(f"Dataset downloaded to: {local_dir}")
```
###  Method 3: Load CSV and Images
```
import pandas as pd
import os
from PIL import Image

# Load CSV
df = pd.read_csv("MUFAC/custom_train_dataset.csv")
print(f"Dataset size: {len(df)} samples")
print(df.head())

# Load sample image
sample_row = df.iloc[0]
img_path = os.path.join("MUFAC", sample_row["image_path"])
img = Image.open(img_path)
img.show()
```

---
## πŸ“Š Citation

This dataset is part of the benchmark suite introduced in the following paper:

```bibtex
@misc{choi2023machine,
  title={Towards Machine Unlearning Benchmarks: Forgetting the Personal Identities in Facial Recognition Systems},
  author={Dasol Choi and Dongbin Na},
  year={2023},
  eprint={2311.02240},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
```

- πŸ”— Code for Experiments:: [https://github.com/ndb796/MachineUnlearning](https://github.com/ndb796/MachineUnlearning)

- πŸ“§ Contact: [email protected]