Dataset Viewer
Auto-converted to Parquet
image_id
string
image
image
prompt_open
string
prompt_close
string
objects
string
relationships
string
498334
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [35, 461, 371, 618]}, {"id": "boy.2", "bbox": [30, 31, 457, 767]}, {"id": "food.3", "bbox": [903, 585, 1023, 663]}, {"id": "food.4", "bbox": [809, 603, 930, 661]}, {"id": "hair.5", "bbox": [220, 32, 422, 189]}, {"id": "hand.6", "bbox": [249, 462, 369, 575]}, {"id": "handle.7", "bbox": [278, 446, 395, 559]}, {"id": "plate.8", "bbox": [381, 430, 542, 507]}, {"id": "pole.9", "bbox": [594, 208, 614, 382]}, {"id": "roof.10", "bbox": [79, 64, 229, 99]}, {"id": "shirt.11", "bbox": [67, 197, 414, 767]}, {"id": "sign.12", "bbox": [519, 192, 669, 388]}, {"id": "logo.13", "bbox": [231, 313, 290, 397]}, {"id": "man.14", "bbox": [31, 32, 507, 764]}]
[{"subject": "logo.13", "predicate": "on", "object": "shirt.11"}, {"subject": "boy.2", "predicate": "has", "object": "arm.1"}, {"subject": "man.14", "predicate": "has", "object": "hand.6"}, {"subject": "man.14", "predicate": "holding", "object": "plate.8"}, {"subject": "sign.12", "predicate": "with", "object": "pole.9"}]
498335
Generate a structured scene graph for an image of size (662 x 1000) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (662 x 1000) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "railing.1", "bbox": [114, 329, 458, 415]}, {"id": "clock.2", "bbox": [410, 29, 651, 917]}, {"id": "face.3", "bbox": [418, 83, 568, 249]}, {"id": "flower.4", "bbox": [323, 850, 536, 977]}, {"id": "pole.5", "bbox": [86, 55, 139, 98]}, {"id": "pot.6", "bbox": [313, 850, 364, 887]}, {"id": "pot.7", "bbox": [364, 920, 480, 981]}, {"id": "sign.8", "bbox": [0, 12, 475, 335]}, {"id": "street.9", "bbox": [0, 682, 661, 801]}, {"id": "sign.10", "bbox": [0, 23, 430, 291]}]
[{"subject": "flower.4", "predicate": "in", "object": "pot.7"}, {"subject": "clock.2", "predicate": "with", "object": "face.3"}]
498336
Generate a structured scene graph for an image of size (768 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (768 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "light.1", "bbox": [80, 122, 169, 163]}, {"id": "tire.2", "bbox": [364, 413, 629, 801]}, {"id": "window.3", "bbox": [110, 185, 143, 251]}, {"id": "truck.4", "bbox": [28, 95, 653, 786]}, {"id": "truck.5", "bbox": [22, 50, 739, 1012]}, {"id": "man.6", "bbox": [162, 98, 370, 486]}, {"id": "car.7", "bbox": [63, 158, 765, 804]}]
[{"subject": "light.1", "predicate": "on", "object": "truck.4"}, {"subject": "tire.2", "predicate": "on", "object": "truck.5"}, {"subject": "man.6", "predicate": "on", "object": "truck.5"}, {"subject": "window.3", "predicate": "on", "object": "truck.5"}]
498337
Generate a structured scene graph for an image of size (467 x 276) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (467 x 276) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [226, 100, 368, 192]}, {"id": "car.2", "bbox": [26, 171, 93, 213]}, {"id": "horse.3", "bbox": [330, 170, 395, 243]}, {"id": "tire.4", "bbox": [146, 175, 165, 194]}, {"id": "vehicle.5", "bbox": [124, 164, 177, 208]}, {"id": "car.6", "bbox": [123, 157, 180, 211]}]
[{"subject": "horse.3", "predicate": "near", "object": "building.1"}, {"subject": "building.1", "predicate": "near", "object": "horse.3"}]
498338
Generate a structured scene graph for an image of size (1024 x 682) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 682) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "guy.1", "bbox": [502, 48, 960, 679]}, {"id": "person.2", "bbox": [3, 104, 534, 659]}, {"id": "shirt.3", "bbox": [519, 277, 788, 680]}]
[{"subject": "shirt.3", "predicate": "on", "object": "guy.1"}]
498339
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [706, 580, 783, 766]}, {"id": "chair.2", "bbox": [737, 566, 929, 764]}, {"id": "man.3", "bbox": [452, 428, 651, 753]}, {"id": "man.4", "bbox": [665, 373, 807, 671]}, {"id": "woman.5", "bbox": [633, 408, 920, 764]}, {"id": "girl.6", "bbox": [381, 368, 494, 656]}, {"id": "glass.7", "bbox": [668, 481, 695, 551]}, {"id": "hair.8", "bbox": [240, 376, 307, 482]}, {"id": "hair.9", "bbox": [414, 367, 493, 491]}, {"id": "jacket.10", "bbox": [455, 495, 652, 696]}, {"id": "jacket.11", "bbox": [494, 407, 637, 508]}, {"id": "pant.12", "bbox": [95, 635, 231, 694]}, {"id": "pant.13", "bbox": [239, 650, 461, 766]}, {"id": "pant.14", "bbox": [635, 637, 837, 767]}, {"id": "shirt.15", "bbox": [701, 414, 791, 494]}, {"id": "shirt.16", "bbox": [227, 473, 440, 709]}, {"id": "shirt.17", "bbox": [18, 492, 201, 690]}, {"id": "table.18", "bbox": [169, 485, 993, 767]}, {"id": "woman.19", "bbox": [233, 376, 311, 490]}, {"id": "woman.20", "bbox": [13, 409, 241, 743]}, {"id": "man.21", "bbox": [214, 413, 472, 765]}, {"id": "woman.22", "bbox": [632, 678, 816, 764]}, {"id": "woman.23", "bbox": [369, 358, 502, 656]}, {"id": "man.24", "bbox": [502, 365, 639, 522]}, {"id": "vase.25", "bbox": [328, 330, 364, 400]}]
[{"subject": "man.21", "predicate": "wearing", "object": "pant.13"}, {"subject": "man.21", "predicate": "wearing", "object": "shirt.16"}, {"subject": "man.3", "predicate": "wearing", "object": "jacket.10"}, {"subject": "woman.22", "predicate": "wearing", "object": "pant.14"}, {"subject": "woman.23", "predicate": "with", "object": "hair.9"}, {"subject": "woman.20", "predicate": "wearing", "object": "pant.12"}, {"subject": "woman.20", "predicate": "wearing", "object": "shirt.17"}, {"subject": "woman.19", "predicate": "with", "object": "hair.8"}, {"subject": "man.4", "predicate": "wearing", "object": "shirt.15"}, {"subject": "man.24", "predicate": "wearing", "object": "jacket.11"}, {"subject": "bag.1", "predicate": "hanging from", "object": "chair.2"}, {"subject": "glass.7", "predicate": "above", "object": "table.18"}]
498340
Generate a structured scene graph for an image of size (1024 x 680) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 680) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "door.1", "bbox": [654, 242, 782, 426]}, {"id": "person.2", "bbox": [839, 296, 866, 369]}, {"id": "tire.3", "bbox": [668, 241, 777, 423]}, {"id": "wheel.4", "bbox": [478, 362, 647, 602]}, {"id": "wheel.5", "bbox": [196, 421, 350, 531]}, {"id": "window.6", "bbox": [879, 210, 1018, 268]}, {"id": "wheel.7", "bbox": [660, 220, 781, 426]}, {"id": "sign.8", "bbox": [209, 242, 279, 342]}]
[{"subject": "tire.3", "predicate": "on", "object": "door.1"}]
498341
Generate a structured scene graph for an image of size (767 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (767 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [464, 352, 540, 483]}, {"id": "arm.2", "bbox": [245, 204, 358, 425]}, {"id": "boot.3", "bbox": [314, 849, 523, 934]}, {"id": "hand.4", "bbox": [275, 408, 360, 523]}, {"id": "hand.5", "bbox": [513, 466, 567, 545]}, {"id": "head.6", "bbox": [373, 41, 492, 180]}, {"id": "jacket.7", "bbox": [242, 141, 543, 508]}, {"id": "leg.8", "bbox": [401, 483, 477, 855]}, {"id": "leg.9", "bbox": [258, 453, 441, 875]}, {"id": "pant.10", "bbox": [255, 450, 474, 866]}, {"id": "person.11", "bbox": [252, 40, 572, 946]}, {"id": "ski.12", "bbox": [290, 861, 568, 960]}]
[{"subject": "leg.9", "predicate": "of", "object": "person.11"}, {"subject": "hand.4", "predicate": "of", "object": "person.11"}, {"subject": "hand.5", "predicate": "of", "object": "person.11"}, {"subject": "arm.2", "predicate": "of", "object": "person.11"}, {"subject": "arm.1", "predicate": "of", "object": "person.11"}, {"subject": "head.6", "predicate": "of", "object": "person.11"}]
498342
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "boat.1", "bbox": [695, 122, 1003, 219]}, {"id": "flag.2", "bbox": [281, 322, 371, 426]}, {"id": "girl.3", "bbox": [367, 296, 463, 472]}, {"id": "leaf.4", "bbox": [407, 0, 1022, 174]}, {"id": "shirt.5", "bbox": [374, 323, 432, 387]}, {"id": "tree.6", "bbox": [423, 0, 964, 221]}]
[{"subject": "girl.3", "predicate": "holding", "object": "flag.2"}, {"subject": "leaf.4", "predicate": "on", "object": "tree.6"}]
498345
Generate a structured scene graph for an image of size (1024 x 685) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 685) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "basket.1", "bbox": [598, 483, 697, 546]}, {"id": "bottle.2", "bbox": [943, 322, 968, 439]}, {"id": "table.3", "bbox": [499, 349, 1020, 679]}, {"id": "coat.4", "bbox": [172, 188, 382, 484]}, {"id": "coat.5", "bbox": [16, 221, 276, 584]}, {"id": "cup.6", "bbox": [779, 407, 856, 498]}, {"id": "glass.7", "bbox": [419, 296, 458, 366]}, {"id": "glass.8", "bbox": [194, 349, 245, 415]}, {"id": "glass.9", "bbox": [654, 315, 684, 378]}, {"id": "glass.10", "bbox": [309, 267, 339, 336]}, {"id": "man.11", "bbox": [371, 169, 539, 679]}, {"id": "man.12", "bbox": [173, 126, 383, 680]}, {"id": "person.13", "bbox": [568, 165, 766, 507]}, {"id": "person.14", "bbox": [16, 138, 271, 679]}, {"id": "jacket.15", "bbox": [895, 243, 993, 349]}, {"id": "jacket.16", "bbox": [372, 239, 543, 493]}, {"id": "kid.17", "bbox": [887, 271, 970, 380]}, {"id": "men.18", "bbox": [172, 128, 542, 684]}, {"id": "pant.19", "bbox": [90, 476, 240, 684]}, {"id": "people.20", "bbox": [15, 126, 1023, 683]}, {"id": "person.21", "bbox": [969, 190, 1023, 314]}, {"id": "person.22", "bbox": [895, 194, 993, 350]}, {"id": "woman.23", "bbox": [775, 186, 913, 408]}, {"id": "basket.24", "bbox": [580, 474, 681, 578]}, {"id": "woman.25", "bbox": [51, 118, 218, 518]}, {"id": "woman.26", "bbox": [21, 140, 302, 680]}, {"id": "man.27", "bbox": [161, 128, 408, 669]}, {"id": "woman.28", "bbox": [559, 156, 765, 507]}, {"id": "woman.29", "bbox": [886, 195, 989, 338]}]
[{"subject": "basket.24", "predicate": "on", "object": "table.3"}, {"subject": "woman.25", "predicate": "holding", "object": "glass.8"}, {"subject": "bottle.2", "predicate": "on", "object": "table.3"}, {"subject": "woman.26", "predicate": "holding", "object": "glass.8"}, {"subject": "man.11", "predicate": "wearing", "object": "jacket.16"}, {"subject": "man.27", "predicate": "wearing", "object": "coat.4"}, {"subject": "person.14", "predicate": "wearing", "object": "pant.19"}, {"subject": "person.14", "predicate": "wearing", "object": "coat.5"}, {"subject": "person.14", "predicate": "holding", "object": "glass.8"}, {"subject": "man.12", "predicate": "holding", "object": "glass.10"}, {"subject": "man.11", "predicate": "holding", "object": "glass.7"}, {"subject": "person.13", "predicate": "holding", "object": "glass.9"}, {"subject": "woman.29", "predicate": "wearing", "object": "jacket.15"}]
498346
Generate a structured scene graph for an image of size (1024 x 678) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 678) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [313, 341, 356, 451]}, {"id": "bike.2", "bbox": [275, 455, 483, 677]}, {"id": "building.3", "bbox": [174, 0, 410, 215]}, {"id": "bus.4", "bbox": [149, 212, 456, 355]}, {"id": "hat.5", "bbox": [585, 293, 623, 331]}, {"id": "helmet.6", "bbox": [363, 285, 420, 314]}, {"id": "man.7", "bbox": [291, 284, 474, 619]}, {"id": "tree.8", "bbox": [773, 0, 1023, 210]}, {"id": "wheel.9", "bbox": [371, 531, 480, 677]}]
[{"subject": "man.7", "predicate": "on", "object": "bike.2"}, {"subject": "wheel.9", "predicate": "on", "object": "bike.2"}, {"subject": "bike.2", "predicate": "with", "object": "man.7"}, {"subject": "man.7", "predicate": "with", "object": "arm.1"}, {"subject": "arm.1", "predicate": "on", "object": "man.7"}]
498348
Generate a structured scene graph for an image of size (768 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (768 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bird.1", "bbox": [420, 347, 468, 391]}, {"id": "car.2", "bbox": [23, 375, 649, 978]}]
[{"subject": "bird.1", "predicate": "on", "object": "car.2"}]
498349
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "snow.1", "bbox": [0, 462, 1022, 763]}, {"id": "hill.2", "bbox": [0, 155, 355, 527]}, {"id": "jacket.3", "bbox": [635, 533, 696, 604]}, {"id": "jacket.4", "bbox": [136, 668, 200, 760]}, {"id": "man.5", "bbox": [631, 509, 698, 676]}, {"id": "mountain.6", "bbox": [207, 305, 762, 558]}, {"id": "pant.7", "bbox": [641, 598, 692, 668]}, {"id": "people.8", "bbox": [138, 633, 201, 765]}, {"id": "skier.9", "bbox": [36, 490, 801, 766]}, {"id": "ski.10", "bbox": [619, 637, 710, 690]}, {"id": "woman.11", "bbox": [125, 627, 206, 764]}, {"id": "person.12", "bbox": [628, 512, 712, 685]}, {"id": "person.13", "bbox": [124, 633, 198, 764]}]
[{"subject": "woman.11", "predicate": "wearing", "object": "jacket.4"}, {"subject": "person.12", "predicate": "wearing", "object": "ski.10"}, {"subject": "person.12", "predicate": "wearing", "object": "jacket.3"}, {"subject": "man.5", "predicate": "in", "object": "mountain.6"}, {"subject": "person.12", "predicate": "on", "object": "snow.1"}, {"subject": "person.13", "predicate": "on", "object": "snow.1"}, {"subject": "skier.9", "predicate": "wearing", "object": "jacket.3"}, {"subject": "skier.9", "predicate": "wearing", "object": "jacket.4"}, {"subject": "man.5", "predicate": "wearing", "object": "pant.7"}]
498350
Generate a structured scene graph for an image of size (765 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (765 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "child.1", "bbox": [652, 603, 761, 1020]}, {"id": "child.2", "bbox": [264, 490, 473, 1019]}, {"id": "child.3", "bbox": [45, 480, 267, 949]}, {"id": "coat.4", "bbox": [704, 294, 764, 431]}, {"id": "kid.5", "bbox": [0, 350, 764, 1022]}, {"id": "man.6", "bbox": [682, 245, 764, 614]}, {"id": "man.7", "bbox": [535, 222, 614, 471]}]
[{"subject": "child.2", "predicate": "standing on", "object": "kid.5"}, {"subject": "child.3", "predicate": "standing on", "object": "kid.5"}, {"subject": "child.1", "predicate": "standing on", "object": "kid.5"}, {"subject": "man.6", "predicate": "wearing", "object": "coat.4"}]
498352
Generate a structured scene graph for an image of size (1024 x 770) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 770) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [895, 132, 1021, 254]}, {"id": "building.2", "bbox": [0, 0, 206, 227]}, {"id": "window.3", "bbox": [99, 96, 146, 168]}, {"id": "window.4", "bbox": [104, 108, 174, 178]}]
[{"subject": "window.4", "predicate": "on", "object": "building.2"}, {"subject": "window.3", "predicate": "on", "object": "building.2"}]
498353
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "curtain.1", "bbox": [264, 290, 366, 465]}, {"id": "train.2", "bbox": [289, 0, 1022, 608]}, {"id": "window.3", "bbox": [619, 161, 662, 287]}, {"id": "window.4", "bbox": [660, 154, 708, 299]}, {"id": "window.5", "bbox": [712, 141, 816, 327]}, {"id": "window.6", "bbox": [529, 158, 556, 263]}, {"id": "window.7", "bbox": [546, 157, 627, 285]}, {"id": "window.8", "bbox": [464, 144, 549, 274]}, {"id": "window.9", "bbox": [376, 162, 409, 223]}, {"id": "vehicle.10", "bbox": [395, 105, 753, 341]}, {"id": "window.11", "bbox": [451, 174, 508, 235]}, {"id": "window.12", "bbox": [584, 174, 731, 272]}]
[{"subject": "window.9", "predicate": "of", "object": "train.2"}, {"subject": "window.8", "predicate": "on", "object": "vehicle.10"}, {"subject": "window.11", "predicate": "on", "object": "vehicle.10"}, {"subject": "window.5", "predicate": "on", "object": "train.2"}, {"subject": "window.4", "predicate": "on", "object": "train.2"}, {"subject": "window.12", "predicate": "on", "object": "train.2"}, {"subject": "window.7", "predicate": "on", "object": "train.2"}, {"subject": "window.3", "predicate": "on", "object": "train.2"}, {"subject": "window.6", "predicate": "on", "object": "train.2"}]
498354
Generate a structured scene graph for an image of size (819 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (819 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "man.1", "bbox": [22, 52, 797, 881]}, {"id": "man.2", "bbox": [460, 33, 730, 681]}, {"id": "fence.3", "bbox": [0, 0, 819, 496]}, {"id": "hair.4", "bbox": [547, 37, 628, 96]}, {"id": "hair.5", "bbox": [96, 55, 225, 148]}, {"id": "hand.6", "bbox": [105, 466, 167, 540]}, {"id": "pole.7", "bbox": [2, 7, 286, 58]}, {"id": "pole.8", "bbox": [748, 0, 765, 155]}, {"id": "pole.9", "bbox": [614, 52, 776, 76]}, {"id": "racket.10", "bbox": [529, 212, 789, 332]}, {"id": "racket.11", "bbox": [61, 364, 160, 540]}, {"id": "shirt.12", "bbox": [190, 135, 536, 431]}, {"id": "shirt.13", "bbox": [465, 137, 709, 384]}, {"id": "shoe.14", "bbox": [712, 711, 800, 879]}, {"id": "shoe.15", "bbox": [28, 787, 194, 870]}, {"id": "short.16", "bbox": [235, 375, 580, 658]}, {"id": "short.17", "bbox": [523, 356, 655, 524]}, {"id": "sock.18", "bbox": [124, 794, 192, 834]}, {"id": "man.19", "bbox": [26, 202, 386, 610]}, {"id": "person.20", "bbox": [118, 177, 676, 759]}, {"id": "shoe.21", "bbox": [659, 723, 776, 877]}, {"id": "person.22", "bbox": [248, 205, 658, 818]}, {"id": "person.23", "bbox": [549, 153, 668, 642]}]
[{"subject": "man.1", "predicate": "has", "object": "hair.5"}, {"subject": "man.1", "predicate": "holding", "object": "racket.11"}, {"subject": "man.2", "predicate": "holding", "object": "racket.10"}, {"subject": "man.1", "predicate": "wearing", "object": "short.16"}, {"subject": "man.2", "predicate": "wearing", "object": "short.17"}, {"subject": "man.2", "predicate": "wearing", "object": "shirt.13"}, {"subject": "man.1", "predicate": "wearing", "object": "shirt.12"}, {"subject": "shoe.14", "predicate": "on", "object": "man.1"}, {"subject": "pole.7", "predicate": "on", "object": "fence.3"}, {"subject": "pole.8", "predicate": "on", "object": "fence.3"}, {"subject": "pole.9", "predicate": "on", "object": "fence.3"}]
498355
Generate a structured scene graph for an image of size (683 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (683 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "box.1", "bbox": [0, 413, 683, 1023]}, {"id": "ear.2", "bbox": [450, 217, 499, 283]}, {"id": "face.3", "bbox": [275, 162, 455, 381]}, {"id": "fork.4", "bbox": [0, 945, 320, 1018]}, {"id": "fork.5", "bbox": [533, 331, 591, 516]}, {"id": "woman.6", "bbox": [143, 3, 627, 588]}, {"id": "glass.7", "bbox": [266, 184, 544, 295]}, {"id": "hair.8", "bbox": [266, 27, 547, 556]}, {"id": "hand.9", "bbox": [490, 450, 609, 580]}, {"id": "hand.10", "bbox": [165, 461, 258, 574]}, {"id": "handle.11", "bbox": [0, 951, 139, 993]}, {"id": "nose.12", "bbox": [317, 233, 366, 291]}, {"id": "pizza.13", "bbox": [37, 598, 683, 1024]}, {"id": "tile.14", "bbox": [0, 371, 30, 457]}, {"id": "tile.15", "bbox": [0, 285, 25, 374]}, {"id": "fork.16", "bbox": [544, 327, 596, 454]}]
[{"subject": "ear.2", "predicate": "on", "object": "woman.6"}, {"subject": "fork.4", "predicate": "on", "object": "pizza.13"}, {"subject": "glass.7", "predicate": "on", "object": "face.3"}, {"subject": "pizza.13", "predicate": "in", "object": "box.1"}, {"subject": "hand.9", "predicate": "on", "object": "woman.6"}, {"subject": "fork.5", "predicate": "in", "object": "hand.9"}, {"subject": "face.3", "predicate": "on", "object": "woman.6"}, {"subject": "nose.12", "predicate": "on", "object": "face.3"}, {"subject": "fork.16", "predicate": "on", "object": "hand.9"}, {"subject": "fork.4", "predicate": "has", "object": "handle.11"}, {"subject": "woman.6", "predicate": "in", "object": "glass.7"}, {"subject": "woman.6", "predicate": "with", "object": "hair.8"}]
498356
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [0, 0, 1022, 764]}, {"id": "face.2", "bbox": [373, 274, 544, 432]}, {"id": "roof.3", "bbox": [606, 132, 686, 175]}, {"id": "tower.4", "bbox": [709, 0, 1021, 766]}, {"id": "window.5", "bbox": [709, 524, 737, 617]}, {"id": "window.6", "bbox": [149, 511, 757, 613]}, {"id": "window.7", "bbox": [508, 489, 573, 636]}, {"id": "window.8", "bbox": [640, 524, 675, 614]}, {"id": "window.9", "bbox": [160, 517, 188, 604]}, {"id": "window.10", "bbox": [236, 508, 269, 605]}, {"id": "window.11", "bbox": [892, 508, 998, 669]}, {"id": "window.12", "bbox": [450, 524, 477, 611]}, {"id": "window.13", "bbox": [382, 519, 413, 608]}, {"id": "window.14", "bbox": [0, 246, 107, 470]}, {"id": "window.15", "bbox": [786, 300, 827, 418]}, {"id": "window.16", "bbox": [822, 517, 865, 630]}, {"id": "window.17", "bbox": [955, 240, 1023, 364]}, {"id": "window.18", "bbox": [227, 507, 286, 605]}, {"id": "window.19", "bbox": [377, 513, 403, 606]}, {"id": "window.20", "bbox": [653, 540, 677, 612]}, {"id": "window.21", "bbox": [382, 513, 409, 602]}, {"id": "window.22", "bbox": [447, 517, 478, 608]}]
[{"subject": "tower.4", "predicate": "with", "object": "window.11"}, {"subject": "window.7", "predicate": "on", "object": "building.1"}, {"subject": "tower.4", "predicate": "with", "object": "window.16"}, {"subject": "tower.4", "predicate": "with", "object": "window.17"}, {"subject": "tower.4", "predicate": "with", "object": "window.15"}, {"subject": "face.2", "predicate": "on", "object": "building.1"}, {"subject": "window.18", "predicate": "in", "object": "building.1"}, {"subject": "window.5", "predicate": "on", "object": "building.1"}, {"subject": "window.8", "predicate": "on", "object": "building.1"}, {"subject": "window.13", "predicate": "on", "object": "building.1"}, {"subject": "window.10", "predicate": "on", "object": "building.1"}, {"subject": "window.9", "predicate": "on", "object": "building.1"}, {"subject": "window.19", "predicate": "on", "object": "building.1"}, {"subject": "window.12", "predicate": "on", "object": "building.1"}, {"subject": "window.20", "predicate": "on", "object": "building.1"}, {"subject": "window.6", "predicate": "on", "object": "building.1"}, {"subject": "window.21", "predicate": "on", "object": "building.1"}, {"subject": "window.22", "predicate": "on", "object": "building.1"}]
498358
Generate a structured scene graph for an image of size (1024 x 767) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 767) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "board.1", "bbox": [832, 276, 920, 389]}, {"id": "chair.2", "bbox": [324, 582, 444, 765]}, {"id": "chair.3", "bbox": [140, 627, 335, 764]}, {"id": "chair.4", "bbox": [0, 628, 143, 765]}, {"id": "chair.5", "bbox": [201, 518, 314, 713]}, {"id": "chair.6", "bbox": [81, 518, 190, 716]}, {"id": "chair.7", "bbox": [827, 436, 920, 562]}, {"id": "curtain.8", "bbox": [1, 229, 99, 568]}, {"id": "head.9", "bbox": [486, 239, 565, 345]}, {"id": "jacket.10", "bbox": [409, 324, 648, 644]}, {"id": "man.11", "bbox": [411, 240, 650, 766]}, {"id": "man.12", "bbox": [764, 363, 829, 526]}, {"id": "pant.13", "bbox": [435, 557, 615, 764]}, {"id": "plant.14", "bbox": [294, 368, 348, 426]}, {"id": "shirt.15", "bbox": [805, 418, 888, 498]}, {"id": "table.16", "bbox": [0, 557, 380, 764]}, {"id": "table.17", "bbox": [787, 612, 1022, 765]}, {"id": "table.18", "bbox": [904, 425, 969, 528]}, {"id": "tie.19", "bbox": [495, 349, 545, 559]}, {"id": "window.20", "bbox": [281, 278, 337, 418]}, {"id": "woman.21", "bbox": [776, 384, 889, 557]}]
[{"subject": "head.9", "predicate": "on", "object": "man.11"}, {"subject": "man.11", "predicate": "with", "object": "head.9"}, {"subject": "man.11", "predicate": "wearing", "object": "tie.19"}, {"subject": "man.11", "predicate": "wearing", "object": "pant.13"}, {"subject": "chair.2", "predicate": "near", "object": "table.16"}, {"subject": "chair.3", "predicate": "near", "object": "table.16"}, {"subject": "chair.4", "predicate": "near", "object": "table.16"}, {"subject": "chair.5", "predicate": "near", "object": "table.16"}, {"subject": "chair.6", "predicate": "near", "object": "table.16"}, {"subject": "woman.21", "predicate": "wearing", "object": "shirt.15"}, {"subject": "woman.21", "predicate": "sitting on", "object": "chair.7"}, {"subject": "man.11", "predicate": "wearing", "object": "jacket.10"}, {"subject": "man.12", "predicate": "near", "object": "woman.21"}]
498359
Generate a structured scene graph for an image of size (799 x 676) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (799 x 676) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [0, 33, 713, 674]}, {"id": "building.2", "bbox": [381, 28, 762, 606]}, {"id": "building.3", "bbox": [0, 39, 460, 674]}, {"id": "building.4", "bbox": [0, 36, 333, 358]}, {"id": "cap.5", "bbox": [617, 614, 664, 660]}, {"id": "head.6", "bbox": [615, 612, 671, 671]}, {"id": "jacket.7", "bbox": [685, 626, 782, 674]}, {"id": "leaf.8", "bbox": [0, 161, 493, 496]}, {"id": "light.9", "bbox": [302, 541, 344, 610]}, {"id": "light.10", "bbox": [165, 513, 241, 605]}, {"id": "light.11", "bbox": [195, 512, 241, 597]}, {"id": "light.12", "bbox": [46, 512, 81, 577]}, {"id": "man.13", "bbox": [571, 622, 620, 674]}, {"id": "person.14", "bbox": [688, 589, 782, 673]}, {"id": "roof.15", "bbox": [0, 38, 681, 582]}, {"id": "sign.16", "bbox": [310, 394, 461, 557]}, {"id": "clock.17", "bbox": [516, 297, 562, 339]}, {"id": "roof.18", "bbox": [113, 210, 235, 312]}, {"id": "light.19", "bbox": [39, 515, 88, 596]}, {"id": "light.20", "bbox": [188, 529, 251, 603]}]
[{"subject": "light.19", "predicate": "on", "object": "building.1"}, {"subject": "light.10", "predicate": "on", "object": "building.1"}, {"subject": "light.11", "predicate": "on", "object": "building.1"}, {"subject": "light.20", "predicate": "on", "object": "building.3"}, {"subject": "light.9", "predicate": "on", "object": "building.3"}, {"subject": "clock.17", "predicate": "on", "object": "building.2"}, {"subject": "person.14", "predicate": "wearing", "object": "jacket.7"}]
498360
Generate a structured scene graph for an image of size (800 x 534) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (800 x 534) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "glove.1", "bbox": [407, 260, 518, 371]}, {"id": "helmet.2", "bbox": [407, 207, 453, 257]}, {"id": "man.3", "bbox": [390, 206, 728, 373]}, {"id": "snow.4", "bbox": [0, 0, 796, 529]}, {"id": "pole.5", "bbox": [265, 54, 417, 389]}, {"id": "ski.6", "bbox": [504, 318, 682, 373]}, {"id": "skier.7", "bbox": [393, 200, 684, 364]}]
[{"subject": "man.3", "predicate": "wearing", "object": "glove.1"}, {"subject": "man.3", "predicate": "wearing", "object": "helmet.2"}, {"subject": "skier.7", "predicate": "wearing", "object": "helmet.2"}, {"subject": "skier.7", "predicate": "wearing", "object": "glove.1"}, {"subject": "skier.7", "predicate": "wearing", "object": "ski.6"}]
498361
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "door.1", "bbox": [316, 272, 392, 469]}, {"id": "door.2", "bbox": [779, 287, 822, 485]}, {"id": "train.3", "bbox": [3, 203, 587, 571]}, {"id": "window.4", "bbox": [530, 243, 720, 391]}, {"id": "train.5", "bbox": [12, 187, 1019, 547]}, {"id": "letter.6", "bbox": [430, 339, 469, 398]}, {"id": "train.7", "bbox": [499, 205, 1010, 538]}, {"id": "window.8", "bbox": [479, 286, 559, 373]}, {"id": "window.9", "bbox": [57, 257, 224, 393]}, {"id": "window.10", "bbox": [996, 315, 1021, 401]}, {"id": "window.11", "bbox": [783, 296, 811, 415]}, {"id": "window.12", "bbox": [336, 290, 371, 344]}, {"id": "train.13", "bbox": [15, 202, 553, 610]}, {"id": "train.14", "bbox": [14, 212, 1015, 580]}, {"id": "window.15", "bbox": [512, 233, 725, 469]}]
[{"subject": "window.9", "predicate": "on", "object": "train.13"}, {"subject": "window.12", "predicate": "on", "object": "train.13"}, {"subject": "window.4", "predicate": "on", "object": "train.7"}, {"subject": "window.11", "predicate": "on", "object": "train.7"}, {"subject": "window.10", "predicate": "on", "object": "train.7"}, {"subject": "window.8", "predicate": "on", "object": "train.13"}, {"subject": "window.8", "predicate": "on", "object": "train.3"}, {"subject": "letter.6", "predicate": "on", "object": "train.3"}, {"subject": "window.15", "predicate": "on", "object": "train.7"}]
498364
Generate a structured scene graph for an image of size (1021 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1021 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "pole.1", "bbox": [406, 0, 459, 707]}, {"id": "sign.2", "bbox": [576, 504, 782, 703]}, {"id": "sign.3", "bbox": [509, 563, 566, 621]}, {"id": "sign.4", "bbox": [117, 495, 312, 675]}, {"id": "truck.5", "bbox": [729, 485, 867, 632]}, {"id": "car.6", "bbox": [793, 511, 1015, 687]}]
[{"subject": "car.6", "predicate": "behind", "object": "truck.5"}]
498365
Generate a structured scene graph for an image of size (1000 x 750) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1000 x 750) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bike.1", "bbox": [364, 380, 522, 528]}, {"id": "bike.2", "bbox": [715, 479, 998, 745]}, {"id": "boy.3", "bbox": [373, 316, 458, 521]}, {"id": "leaf.4", "bbox": [294, 133, 333, 204]}, {"id": "leaf.5", "bbox": [726, 295, 758, 381]}, {"id": "leaf.6", "bbox": [500, 283, 583, 364]}, {"id": "leaf.7", "bbox": [675, 299, 724, 366]}, {"id": "leaf.8", "bbox": [609, 294, 641, 364]}, {"id": "leaf.9", "bbox": [347, 106, 410, 172]}, {"id": "shirt.10", "bbox": [385, 342, 451, 420]}, {"id": "short.11", "bbox": [397, 414, 447, 471]}, {"id": "sign.12", "bbox": [458, 351, 683, 414]}, {"id": "tire.13", "bbox": [715, 570, 894, 745]}, {"id": "tire.14", "bbox": [449, 445, 521, 526]}, {"id": "tree.15", "bbox": [672, 295, 758, 463]}, {"id": "tree.16", "bbox": [456, 115, 641, 262]}, {"id": "tree.17", "bbox": [486, 267, 581, 355]}]
[{"subject": "boy.3", "predicate": "wearing", "object": "shirt.10"}, {"subject": "leaf.6", "predicate": "on", "object": "tree.17"}, {"subject": "leaf.5", "predicate": "on", "object": "tree.15"}]
498366
Generate a structured scene graph for an image of size (960 x 1280) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (960 x 1280) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "clock.1", "bbox": [323, 490, 468, 640]}, {"id": "leg.2", "bbox": [236, 953, 295, 1277]}, {"id": "plant.3", "bbox": [310, 31, 635, 361]}, {"id": "pot.4", "bbox": [428, 217, 547, 292]}, {"id": "shelf.5", "bbox": [213, 281, 783, 1278]}, {"id": "toilet.6", "bbox": [316, 1017, 681, 1273]}, {"id": "towel.7", "bbox": [420, 856, 687, 982]}, {"id": "towel.8", "bbox": [405, 941, 686, 1073]}, {"id": "towel.9", "bbox": [400, 730, 690, 911]}, {"id": "vase.10", "bbox": [433, 513, 525, 695]}, {"id": "vase.11", "bbox": [583, 498, 645, 672]}, {"id": "toilet.12", "bbox": [328, 1045, 617, 1273]}, {"id": "handle.13", "bbox": [325, 1085, 375, 1142]}]
[{"subject": "shelf.5", "predicate": "above", "object": "toilet.6"}, {"subject": "plant.3", "predicate": "above", "object": "shelf.5"}, {"subject": "pot.4", "predicate": "on", "object": "shelf.5"}, {"subject": "clock.1", "predicate": "on", "object": "shelf.5"}, {"subject": "towel.9", "predicate": "on", "object": "shelf.5"}, {"subject": "towel.7", "predicate": "on", "object": "shelf.5"}, {"subject": "towel.8", "predicate": "on", "object": "shelf.5"}, {"subject": "vase.10", "predicate": "on", "object": "shelf.5"}, {"subject": "vase.11", "predicate": "on", "object": "shelf.5"}, {"subject": "handle.13", "predicate": "on", "object": "toilet.12"}]
498367
Generate a structured scene graph for an image of size (675 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (675 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [318, 527, 439, 768]}, {"id": "bag.2", "bbox": [85, 545, 150, 756]}, {"id": "building.3", "bbox": [0, 4, 675, 639]}, {"id": "hair.4", "bbox": [339, 453, 403, 518]}, {"id": "jacket.5", "bbox": [0, 534, 115, 725]}, {"id": "jacket.6", "bbox": [438, 505, 570, 659]}, {"id": "jacket.7", "bbox": [545, 516, 673, 670]}, {"id": "jacket.8", "bbox": [314, 509, 468, 685]}, {"id": "man.9", "bbox": [70, 481, 135, 808]}, {"id": "man.10", "bbox": [437, 455, 579, 828]}, {"id": "pant.11", "bbox": [0, 706, 105, 908]}, {"id": "pant.12", "bbox": [353, 749, 434, 858]}, {"id": "shirt.13", "bbox": [135, 549, 208, 614]}, {"id": "shirt.14", "bbox": [72, 514, 132, 610]}, {"id": "shoe.15", "bbox": [41, 901, 80, 940]}, {"id": "tie.16", "bbox": [477, 508, 500, 606]}, {"id": "woman.17", "bbox": [135, 506, 226, 686]}, {"id": "woman.18", "bbox": [309, 454, 540, 946]}, {"id": "woman.19", "bbox": [522, 454, 674, 884]}, {"id": "woman.20", "bbox": [0, 470, 152, 952]}, {"id": "tie.21", "bbox": [471, 505, 522, 605]}, {"id": "shoe.22", "bbox": [337, 870, 420, 941]}]
[{"subject": "man.10", "predicate": "wearing", "object": "tie.21"}, {"subject": "woman.20", "predicate": "wearing", "object": "pant.11"}, {"subject": "woman.18", "predicate": "wearing", "object": "jacket.8"}, {"subject": "woman.18", "predicate": "wearing", "object": "pant.12"}, {"subject": "woman.18", "predicate": "holding", "object": "bag.1"}, {"subject": "man.10", "predicate": "wearing", "object": "tie.16"}, {"subject": "woman.18", "predicate": "wearing", "object": "shoe.22"}, {"subject": "woman.20", "predicate": "holding", "object": "bag.2"}, {"subject": "woman.20", "predicate": "wearing", "object": "jacket.5"}, {"subject": "woman.20", "predicate": "wearing", "object": "shoe.15"}, {"subject": "woman.18", "predicate": "with", "object": "hair.4"}, {"subject": "man.10", "predicate": "in", "object": "jacket.6"}, {"subject": "man.9", "predicate": "in", "object": "shirt.14"}, {"subject": "woman.17", "predicate": "in", "object": "shirt.13"}, {"subject": "jacket.8", "predicate": "on", "object": "woman.18"}, {"subject": "jacket.7", "predicate": "on", "object": "woman.19"}]
498368
Generate a structured scene graph for an image of size (1024 x 363) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 363) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "curtain.1", "bbox": [211, 69, 324, 232]}, {"id": "lamp.2", "bbox": [753, 110, 804, 185]}, {"id": "room.3", "bbox": [0, 0, 1024, 363]}, {"id": "glass.4", "bbox": [397, 249, 464, 332]}, {"id": "table.5", "bbox": [317, 269, 756, 352]}]
[{"subject": "glass.4", "predicate": "on", "object": "table.5"}]
498369
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [252, 190, 326, 234]}, {"id": "bag.2", "bbox": [347, 243, 477, 351]}, {"id": "boy.3", "bbox": [342, 382, 749, 540]}, {"id": "chair.4", "bbox": [570, 423, 846, 657]}, {"id": "face.5", "bbox": [579, 73, 625, 127]}, {"id": "lady.6", "bbox": [163, 155, 378, 468]}, {"id": "pant.7", "bbox": [256, 350, 405, 484]}, {"id": "person.8", "bbox": [517, 51, 688, 202]}, {"id": "table.9", "bbox": [318, 139, 1005, 524]}, {"id": "tile.10", "bbox": [101, 489, 397, 652]}, {"id": "boy.11", "bbox": [327, 403, 481, 529]}, {"id": "shirt.12", "bbox": [402, 423, 575, 517]}, {"id": "boy.13", "bbox": [331, 380, 593, 540]}, {"id": "cup.14", "bbox": [654, 268, 697, 333]}, {"id": "plate.15", "bbox": [758, 305, 819, 360]}, {"id": "plate.16", "bbox": [799, 280, 860, 324]}, {"id": "plate.17", "bbox": [803, 302, 866, 374]}, {"id": "woman.18", "bbox": [485, 53, 684, 194]}, {"id": "woman.19", "bbox": [626, 43, 841, 227]}, {"id": "table.20", "bbox": [372, 157, 943, 559]}, {"id": "seat.21", "bbox": [657, 440, 770, 546]}, {"id": "shirt.22", "bbox": [218, 211, 353, 397]}, {"id": "guy.23", "bbox": [324, 372, 485, 539]}, {"id": "woman.24", "bbox": [196, 148, 329, 299]}, {"id": "child.25", "bbox": [157, 199, 285, 374]}, {"id": "child.26", "bbox": [164, 189, 247, 304]}, {"id": "shirt.27", "bbox": [430, 437, 606, 520]}, {"id": "chair.28", "bbox": [409, 489, 656, 656]}, {"id": "bag.29", "bbox": [331, 231, 472, 320]}, {"id": "shirt.30", "bbox": [530, 98, 664, 202]}, {"id": "plate.31", "bbox": [495, 212, 562, 271]}, {"id": "food.32", "bbox": [499, 235, 554, 268]}]
[{"subject": "boy.11", "predicate": "wearing", "object": "shirt.12"}, {"subject": "cup.14", "predicate": "sitting on", "object": "table.9"}, {"subject": "chair.4", "predicate": "with", "object": "seat.21"}, {"subject": "lady.6", "predicate": "wearing", "object": "shirt.22"}, {"subject": "guy.23", "predicate": "wearing", "object": "shirt.12"}, {"subject": "table.9", "predicate": "near", "object": "woman.24"}, {"subject": "woman.24", "predicate": "holding", "object": "child.25"}, {"subject": "woman.24", "predicate": "holding", "object": "child.26"}, {"subject": "woman.24", "predicate": "with", "object": "arm.1"}, {"subject": "boy.3", "predicate": "wearing", "object": "shirt.27"}, {"subject": "bag.29", "predicate": "on", "object": "table.9"}, {"subject": "person.8", "predicate": "in", "object": "shirt.30"}, {"subject": "plate.31", "predicate": "of", "object": "food.32"}]
End of preview. Expand in Data Studio

This repository contains the VG150 dataset transformed into datasets format with keys: "image_id", "image", "prompt_open", "prompt_close", "objects", and "relationships".

It was presented in the paper Compile Scene Graphs with Reinforcement Learning.

Code: https://github.com/gpt4vision/R1-SGG

Downloads last month
362

Models trained or fine-tuned on JosephZ/vg150_train_sgg_prompt