image_id
string
image
image
prompt_open
string
prompt_close
string
objects
string
relationships
string
713010
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "plane.1", "bbox": [11, 33, 996, 632]}, {"id": "door.2", "bbox": [679, 331, 764, 483]}, {"id": "tree.3", "bbox": [289, 239, 321, 290]}, {"id": "wheel.4", "bbox": [554, 552, 642, 613]}, {"id": "window.5", "bbox": [769, 387, 977, 433]}, {"id": "plane.6", "bbox": [13, 30, 992, 715]}]
[{"subject": "window.5", "predicate": "on", "object": "plane.6"}, {"subject": "wheel.4", "predicate": "on", "object": "plane.1"}, {"subject": "door.2", "predicate": "on", "object": "plane.1"}]
713011
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "head.1", "bbox": [338, 78, 469, 170]}, {"id": "jean.2", "bbox": [263, 296, 402, 551]}, {"id": "letter.3", "bbox": [543, 442, 615, 531]}, {"id": "letter.4", "bbox": [631, 465, 664, 526]}, {"id": "letter.5", "bbox": [734, 443, 799, 537]}, {"id": "letter.6", "bbox": [802, 452, 870, 543]}, {"id": "letter.7", "bbox": [947, 446, 1005, 555]}, {"id": "letter.8", "bbox": [547, 445, 605, 541]}, {"id": "letter.9", "bbox": [943, 457, 990, 538]}, {"id": "man.10", "bbox": [387, 0, 860, 647]}, {"id": "man.11", "bbox": [805, 167, 934, 347]}, {"id": "people.12", "bbox": [263, 7, 847, 637]}, {"id": "person.13", "bbox": [808, 171, 929, 336]}, {"id": "person.14", "bbox": [773, 228, 814, 278]}, {"id": "shirt.15", "bbox": [305, 121, 500, 325]}, {"id": "shirt.16", "bbox": [463, 89, 740, 275]}, {"id": "shirt.17", "bbox": [805, 212, 884, 338]}, {"id": "short.18", "bbox": [603, 306, 726, 418]}, {"id": "sock.19", "bbox": [642, 535, 694, 572]}, {"id": "woman.20", "bbox": [257, 22, 550, 625]}, {"id": "cap.21", "bbox": [598, 11, 683, 120]}, {"id": "hat.22", "bbox": [335, 25, 483, 114]}]
[{"subject": "woman.20", "predicate": "wearing", "object": "shirt.15"}, {"subject": "woman.20", "predicate": "wears", "object": "jean.2"}, {"subject": "man.10", "predicate": "wearing", "object": "cap.21"}, {"subject": "woman.20", "predicate": "wearing", "object": "hat.22"}, {"subject": "man.10", "predicate": "wears", "object": "sock.19"}, {"subject": "man.11", "predicate": "wears", "object": "shirt.17"}, {"subject": "man.10", "predicate": "wears", "object": "short.18"}]
713012
Generate a structured scene graph for an image of size (1280 x 853) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1280 x 853) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bench.1", "bbox": [951, 393, 1275, 848]}, {"id": "hair.2", "bbox": [362, 37, 537, 192]}, {"id": "hair.3", "bbox": [887, 198, 1091, 455]}, {"id": "jean.4", "bbox": [160, 416, 435, 757]}, {"id": "shirt.5", "bbox": [138, 115, 475, 485]}, {"id": "woman.6", "bbox": [140, 37, 620, 820]}]
[{"subject": "woman.6", "predicate": "in", "object": "shirt.5"}, {"subject": "hair.2", "predicate": "of", "object": "woman.6"}]
713013
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "man.1", "bbox": [737, 246, 944, 615]}, {"id": "table.2", "bbox": [195, 385, 737, 679]}, {"id": "chair.3", "bbox": [0, 348, 186, 681]}, {"id": "chair.4", "bbox": [692, 351, 886, 652]}, {"id": "chair.5", "bbox": [579, 312, 713, 556]}, {"id": "curtain.6", "bbox": [797, 31, 992, 303]}, {"id": "curtain.7", "bbox": [547, 83, 679, 258]}, {"id": "man.8", "bbox": [264, 230, 393, 397]}, {"id": "people.9", "bbox": [474, 248, 597, 495]}, {"id": "person.10", "bbox": [608, 231, 742, 532]}, {"id": "person.11", "bbox": [891, 240, 1023, 372]}, {"id": "room.12", "bbox": [0, 0, 1024, 683]}, {"id": "shirt.13", "bbox": [262, 271, 363, 363]}, {"id": "woman.14", "bbox": [25, 241, 160, 365]}, {"id": "woman.15", "bbox": [600, 237, 733, 541]}, {"id": "person.16", "bbox": [464, 239, 591, 468]}, {"id": "person.17", "bbox": [259, 219, 396, 396]}, {"id": "shirt.18", "bbox": [741, 315, 856, 503]}, {"id": "woman.19", "bbox": [939, 252, 1017, 335]}, {"id": "table.20", "bbox": [246, 457, 670, 647]}]
[{"subject": "person.10", "predicate": "sitting on", "object": "chair.5"}, {"subject": "man.1", "predicate": "sitting on", "object": "chair.4"}, {"subject": "man.8", "predicate": "wearing", "object": "shirt.13"}, {"subject": "person.11", "predicate": "in", "object": "room.12"}, {"subject": "person.16", "predicate": "in", "object": "room.12"}, {"subject": "man.1", "predicate": "in", "object": "room.12"}, {"subject": "person.10", "predicate": "in", "object": "room.12"}, {"subject": "person.17", "predicate": "in", "object": "room.12"}]
713015
Generate a structured scene graph for an image of size (599 x 800) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (599 x 800) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [308, 334, 438, 378]}, {"id": "arm.2", "bbox": [48, 295, 148, 332]}, {"id": "bowl.3", "bbox": [482, 237, 596, 290]}, {"id": "chair.4", "bbox": [38, 183, 477, 793]}, {"id": "light.5", "bbox": [0, 0, 50, 331]}, {"id": "nose.6", "bbox": [155, 364, 190, 405]}, {"id": "table.7", "bbox": [412, 282, 594, 796]}, {"id": "table.8", "bbox": [433, 274, 593, 607]}]
[{"subject": "bowl.3", "predicate": "on", "object": "table.8"}, {"subject": "arm.1", "predicate": "on", "object": "chair.4"}, {"subject": "arm.2", "predicate": "on", "object": "chair.4"}]
713016
Generate a structured scene graph for an image of size (768 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (768 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "man.1", "bbox": [309, 359, 465, 507]}, {"id": "sidewalk.2", "bbox": [0, 348, 763, 1020]}, {"id": "pole.3", "bbox": [190, 370, 237, 710]}, {"id": "pole.4", "bbox": [328, 291, 349, 388]}, {"id": "pole.5", "bbox": [276, 323, 301, 536]}, {"id": "pole.6", "bbox": [250, 341, 279, 602]}, {"id": "pole.7", "bbox": [112, 421, 171, 892]}, {"id": "post.8", "bbox": [112, 279, 361, 895]}, {"id": "sign.9", "bbox": [351, 115, 413, 178]}, {"id": "truck.10", "bbox": [404, 221, 535, 341]}, {"id": "woman.11", "bbox": [368, 207, 429, 341]}, {"id": "jean.12", "bbox": [368, 273, 415, 326]}, {"id": "hair.13", "bbox": [365, 222, 412, 275]}]
[{"subject": "woman.11", "predicate": "in", "object": "jean.12"}, {"subject": "woman.11", "predicate": "has", "object": "hair.13"}, {"subject": "pole.7", "predicate": "on", "object": "sidewalk.2"}, {"subject": "pole.3", "predicate": "on", "object": "sidewalk.2"}, {"subject": "pole.6", "predicate": "on", "object": "sidewalk.2"}]
713017
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [0, 273, 117, 439]}, {"id": "child.2", "bbox": [48, 204, 102, 383]}, {"id": "horse.3", "bbox": [93, 384, 337, 766]}, {"id": "horse.4", "bbox": [392, 305, 461, 443]}, {"id": "horse.5", "bbox": [418, 437, 746, 767]}, {"id": "person.6", "bbox": [460, 150, 553, 408]}, {"id": "person.7", "bbox": [730, 205, 798, 391]}, {"id": "person.8", "bbox": [0, 240, 341, 766]}, {"id": "person.9", "bbox": [778, 405, 1020, 764]}, {"id": "person.10", "bbox": [402, 199, 474, 364]}, {"id": "person.11", "bbox": [0, 154, 59, 549]}, {"id": "pole.12", "bbox": [55, 0, 68, 315]}, {"id": "shirt.13", "bbox": [321, 341, 548, 616]}, {"id": "shirt.14", "bbox": [49, 334, 253, 488]}, {"id": "sign.15", "bbox": [57, 274, 117, 344]}, {"id": "man.16", "bbox": [309, 223, 664, 762]}, {"id": "woman.17", "bbox": [4, 241, 270, 763]}, {"id": "woman.18", "bbox": [441, 139, 550, 342]}]
[{"subject": "shirt.13", "predicate": "on", "object": "man.16"}, {"subject": "man.16", "predicate": "in", "object": "shirt.13"}]
713018
Generate a structured scene graph for an image of size (1024 x 749) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 749) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "boy.1", "bbox": [282, 409, 477, 701]}, {"id": "clock.2", "bbox": [28, 198, 89, 252]}, {"id": "clock.3", "bbox": [57, 87, 155, 114]}, {"id": "hair.4", "bbox": [494, 200, 548, 252]}, {"id": "jacket.5", "bbox": [108, 286, 180, 383]}, {"id": "jacket.6", "bbox": [282, 443, 455, 615]}, {"id": "man.7", "bbox": [631, 191, 688, 271]}, {"id": "number.8", "bbox": [57, 91, 153, 113]}, {"id": "people.9", "bbox": [31, 196, 619, 702]}, {"id": "person.10", "bbox": [84, 258, 188, 477]}, {"id": "sign.11", "bbox": [0, 119, 150, 144]}, {"id": "train.12", "bbox": [364, 0, 1018, 748]}, {"id": "window.13", "bbox": [739, 0, 915, 249]}, {"id": "woman.14", "bbox": [483, 200, 617, 604]}, {"id": "woman.15", "bbox": [329, 281, 416, 456]}]
[{"subject": "man.7", "predicate": "in", "object": "train.12"}, {"subject": "train.12", "predicate": "has", "object": "window.13"}]
713020
Generate a structured scene graph for an image of size (1024 x 682) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 682) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "hat.1", "bbox": [924, 181, 970, 212]}, {"id": "man.2", "bbox": [446, 266, 588, 571]}, {"id": "man.3", "bbox": [619, 308, 754, 569]}, {"id": "man.4", "bbox": [887, 182, 1022, 570]}, {"id": "shirt.5", "bbox": [512, 330, 551, 418]}, {"id": "sign.6", "bbox": [601, 303, 666, 349]}, {"id": "sign.7", "bbox": [598, 351, 648, 418]}, {"id": "person.8", "bbox": [878, 172, 987, 572]}, {"id": "man.9", "bbox": [432, 302, 634, 586]}]
[{"subject": "person.8", "predicate": "has", "object": "hat.1"}, {"subject": "shirt.5", "predicate": "on", "object": "man.9"}]
713021
Generate a structured scene graph for an image of size (1024 x 674) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 674) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bus.1", "bbox": [7, 8, 1008, 667]}, {"id": "curtain.2", "bbox": [140, 125, 251, 286]}, {"id": "door.3", "bbox": [516, 162, 599, 592]}, {"id": "fence.4", "bbox": [0, 0, 1024, 89]}, {"id": "letter.5", "bbox": [280, 308, 446, 348]}, {"id": "paper.6", "bbox": [641, 331, 880, 394]}, {"id": "person.7", "bbox": [784, 240, 882, 368]}, {"id": "plate.8", "bbox": [782, 558, 861, 600]}, {"id": "wheel.9", "bbox": [831, 297, 940, 328]}, {"id": "window.10", "bbox": [122, 109, 257, 305]}, {"id": "window.11", "bbox": [469, 88, 529, 332]}, {"id": "window.12", "bbox": [326, 105, 382, 286]}, {"id": "window.13", "bbox": [372, 95, 428, 299]}, {"id": "window.14", "bbox": [587, 185, 987, 456]}, {"id": "window.15", "bbox": [593, 161, 998, 395]}, {"id": "windshield.16", "bbox": [566, 106, 990, 470]}, {"id": "person.17", "bbox": [779, 248, 935, 443]}, {"id": "window.18", "bbox": [201, 108, 310, 370]}, {"id": "window.19", "bbox": [301, 115, 412, 325]}]
[{"subject": "bus.1", "predicate": "with", "object": "curtain.2"}, {"subject": "paper.6", "predicate": "in", "object": "windshield.16"}, {"subject": "person.7", "predicate": "behind", "object": "wheel.9"}, {"subject": "windshield.16", "predicate": "on", "object": "bus.1"}, {"subject": "door.3", "predicate": "on", "object": "bus.1"}, {"subject": "letter.5", "predicate": "on", "object": "bus.1"}, {"subject": "plate.8", "predicate": "on", "object": "bus.1"}, {"subject": "window.14", "predicate": "on", "object": "bus.1"}, {"subject": "window.10", "predicate": "on", "object": "bus.1"}, {"subject": "window.18", "predicate": "on", "object": "bus.1"}, {"subject": "window.19", "predicate": "on", "object": "bus.1"}, {"subject": "window.13", "predicate": "on", "object": "bus.1"}, {"subject": "window.11", "predicate": "on", "object": "bus.1"}, {"subject": "window.15", "predicate": "on", "object": "bus.1"}, {"subject": "window.12", "predicate": "on", "object": "bus.1"}]
713022
Generate a structured scene graph for an image of size (683 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (683 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "face.1", "bbox": [290, 256, 375, 347]}, {"id": "girl.2", "bbox": [140, 143, 664, 994]}, {"id": "glove.3", "bbox": [141, 383, 212, 463]}, {"id": "hair.4", "bbox": [254, 137, 472, 422]}, {"id": "hat.5", "bbox": [282, 141, 425, 314]}, {"id": "jacket.6", "bbox": [506, 475, 633, 626]}, {"id": "jacket.7", "bbox": [194, 316, 610, 626]}, {"id": "pant.8", "bbox": [356, 609, 555, 948]}, {"id": "pole.9", "bbox": [31, 350, 206, 966]}, {"id": "pole.10", "bbox": [608, 493, 641, 710]}, {"id": "ski.11", "bbox": [170, 908, 642, 1019]}, {"id": "snow.12", "bbox": [0, 435, 683, 1021]}, {"id": "track.13", "bbox": [49, 794, 678, 981]}, {"id": "tree.14", "bbox": [574, 51, 681, 432]}, {"id": "girl.15", "bbox": [215, 138, 494, 436]}]
[{"subject": "girl.2", "predicate": "wearing", "object": "ski.11"}, {"subject": "track.13", "predicate": "in", "object": "snow.12"}]
713023
Generate a structured scene graph for an image of size (640 x 480) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (640 x 480) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "glass.1", "bbox": [242, 85, 298, 122]}, {"id": "man.2", "bbox": [200, 25, 413, 374]}, {"id": "person.3", "bbox": [0, 45, 135, 404]}, {"id": "person.4", "bbox": [418, 27, 552, 292]}, {"id": "person.5", "bbox": [570, 45, 598, 115]}, {"id": "person.6", "bbox": [506, 21, 558, 161]}, {"id": "vase.7", "bbox": [0, 225, 46, 342]}, {"id": "vase.8", "bbox": [539, 270, 582, 326]}, {"id": "vase.9", "bbox": [515, 259, 546, 338]}, {"id": "vase.10", "bbox": [476, 278, 521, 347]}, {"id": "wheel.11", "bbox": [268, 210, 382, 373]}]
[{"subject": "man.2", "predicate": "using", "object": "wheel.11"}, {"subject": "glass.1", "predicate": "on", "object": "man.2"}]
713025
Generate a structured scene graph for an image of size (1024 x 681) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 681) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "clock.1", "bbox": [397, 113, 670, 625]}, {"id": "tree.2", "bbox": [2, 455, 402, 678]}, {"id": "tree.3", "bbox": [680, 570, 841, 680]}, {"id": "tower.4", "bbox": [315, 81, 688, 674]}, {"id": "hand.5", "bbox": [477, 378, 540, 422]}, {"id": "clock.6", "bbox": [484, 352, 545, 432]}, {"id": "tree.7", "bbox": [19, 29, 336, 294]}]
[{"subject": "clock.1", "predicate": "on", "object": "tower.4"}, {"subject": "hand.5", "predicate": "on", "object": "clock.1"}, {"subject": "clock.6", "predicate": "on", "object": "tower.4"}, {"subject": "tree.7", "predicate": "in", "object": "tower.4"}]
713026
Generate a structured scene graph for an image of size (1024 x 576) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 576) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "board.1", "bbox": [215, 250, 776, 548]}, {"id": "bottle.2", "bbox": [54, 327, 160, 468]}, {"id": "bottle.3", "bbox": [132, 27, 263, 299]}, {"id": "bottle.4", "bbox": [252, 138, 339, 268]}, {"id": "woman.5", "bbox": [300, 190, 680, 492]}, {"id": "table.6", "bbox": [0, 62, 786, 571]}, {"id": "counter.7", "bbox": [29, 444, 153, 568]}, {"id": "counter.8", "bbox": [11, 26, 340, 299]}, {"id": "food.9", "bbox": [1, 286, 99, 384]}, {"id": "hand.10", "bbox": [732, 270, 872, 351]}, {"id": "plate.11", "bbox": [0, 242, 161, 460]}, {"id": "woman.12", "bbox": [731, 132, 1022, 572]}, {"id": "hand.13", "bbox": [736, 239, 898, 356]}, {"id": "table.14", "bbox": [0, 2, 820, 552]}, {"id": "woman.15", "bbox": [292, 182, 720, 535]}]
[{"subject": "bottle.2", "predicate": "on", "object": "counter.7"}, {"subject": "bottle.3", "predicate": "on", "object": "counter.8"}, {"subject": "woman.5", "predicate": "on", "object": "board.1"}, {"subject": "plate.11", "predicate": "on", "object": "table.6"}, {"subject": "food.9", "predicate": "on", "object": "plate.11"}]
713027
Generate a structured scene graph for an image of size (1024 x 674) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 674) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "beach.1", "bbox": [0, 160, 1022, 485]}, {"id": "horse.2", "bbox": [301, 307, 391, 370]}, {"id": "beach.3", "bbox": [17, 319, 1014, 488]}]
[{"subject": "horse.2", "predicate": "on", "object": "beach.1"}]
713028
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "chair.1", "bbox": [846, 482, 943, 634]}, {"id": "chair.2", "bbox": [149, 466, 292, 700]}, {"id": "jacket.3", "bbox": [661, 352, 785, 499]}, {"id": "kite.4", "bbox": [606, 393, 931, 616]}, {"id": "sign.5", "bbox": [855, 425, 968, 486]}, {"id": "woman.6", "bbox": [625, 303, 786, 676]}]
[{"subject": "woman.6", "predicate": "wearing", "object": "jacket.3"}, {"subject": "sign.5", "predicate": "above", "object": "chair.1"}, {"subject": "woman.6", "predicate": "holding", "object": "kite.4"}]
713030
Generate a structured scene graph for an image of size (768 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (768 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bike.1", "bbox": [278, 677, 767, 1013]}, {"id": "boy.2", "bbox": [426, 612, 556, 941]}, {"id": "building.3", "bbox": [0, 374, 548, 474]}, {"id": "shirt.4", "bbox": [324, 633, 494, 835]}, {"id": "hair.5", "bbox": [356, 558, 433, 630]}, {"id": "helmet.6", "bbox": [591, 679, 684, 736]}, {"id": "light.7", "bbox": [311, 828, 372, 878]}, {"id": "pant.8", "bbox": [528, 759, 660, 868]}, {"id": "people.9", "bbox": [321, 559, 670, 953]}, {"id": "shirt.10", "bbox": [453, 667, 519, 743]}, {"id": "shoe.11", "bbox": [569, 899, 645, 940]}, {"id": "tower.12", "bbox": [510, 231, 557, 470]}, {"id": "tower.13", "bbox": [290, 186, 354, 470]}, {"id": "woman.14", "bbox": [321, 556, 534, 959]}]
[{"subject": "shirt.4", "predicate": "on", "object": "woman.14"}, {"subject": "people.9", "predicate": "riding", "object": "bike.1"}, {"subject": "light.7", "predicate": "of", "object": "bike.1"}]
713031
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "window.1", "bbox": [539, 129, 712, 331]}, {"id": "window.2", "bbox": [768, 129, 925, 326]}, {"id": "window.3", "bbox": [319, 128, 490, 333]}, {"id": "building.4", "bbox": [0, 0, 1024, 433]}, {"id": "jean.5", "bbox": [477, 348, 646, 543]}, {"id": "man.6", "bbox": [460, 165, 686, 571]}, {"id": "man.7", "bbox": [100, 244, 317, 580]}, {"id": "motorcycle.8", "bbox": [109, 266, 503, 620]}, {"id": "motorcycle.9", "bbox": [436, 328, 911, 633]}, {"id": "wheel.10", "bbox": [728, 464, 900, 632]}, {"id": "window.11", "bbox": [529, 122, 716, 342]}, {"id": "window.12", "bbox": [305, 119, 502, 335]}, {"id": "window.13", "bbox": [63, 115, 275, 342]}, {"id": "window.14", "bbox": [989, 126, 1021, 322]}]
[{"subject": "window.11", "predicate": "on", "object": "building.4"}, {"subject": "window.12", "predicate": "on", "object": "building.4"}, {"subject": "window.13", "predicate": "on", "object": "building.4"}, {"subject": "window.2", "predicate": "on", "object": "building.4"}, {"subject": "motorcycle.9", "predicate": "sitting on", "object": "man.6"}, {"subject": "man.7", "predicate": "sitting on", "object": "motorcycle.8"}, {"subject": "wheel.10", "predicate": "on", "object": "motorcycle.9"}, {"subject": "man.6", "predicate": "wearing", "object": "jean.5"}]
713032
Generate a structured scene graph for an image of size (1024 x 556) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 556) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [0, 236, 96, 395]}, {"id": "plane.2", "bbox": [522, 237, 930, 412]}, {"id": "plane.3", "bbox": [0, 286, 796, 491]}, {"id": "tail.4", "bbox": [426, 9, 550, 290]}, {"id": "wheel.5", "bbox": [412, 454, 466, 492]}, {"id": "window.6", "bbox": [166, 335, 350, 351]}, {"id": "wing.7", "bbox": [557, 309, 795, 347]}, {"id": "wing.8", "bbox": [508, 351, 899, 386]}, {"id": "wing.9", "bbox": [0, 367, 262, 413]}, {"id": "plane.10", "bbox": [3, 259, 560, 456]}, {"id": "plane.11", "bbox": [83, 3, 595, 497]}]
[{"subject": "wing.9", "predicate": "on", "object": "plane.10"}, {"subject": "window.6", "predicate": "on", "object": "plane.11"}, {"subject": "wheel.5", "predicate": "on", "object": "plane.11"}, {"subject": "tail.4", "predicate": "on", "object": "plane.11"}, {"subject": "wing.8", "predicate": "on", "object": "plane.2"}, {"subject": "wing.7", "predicate": "on", "object": "plane.2"}]
713033
Generate a structured scene graph for an image of size (1024 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bottle.1", "bbox": [709, 346, 755, 466]}, {"id": "building.2", "bbox": [0, 15, 158, 565]}, {"id": "food.3", "bbox": [642, 623, 1011, 914]}, {"id": "glass.4", "bbox": [409, 507, 505, 698]}, {"id": "man.5", "bbox": [89, 35, 1012, 1023]}, {"id": "shirt.6", "bbox": [90, 361, 566, 1023]}]
[{"subject": "man.5", "predicate": "holding", "object": "food.3"}, {"subject": "man.5", "predicate": "holding", "object": "bottle.1"}]
713034
Generate a structured scene graph for an image of size (1024 x 682) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 682) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bed.1", "bbox": [637, 146, 939, 365]}, {"id": "cabinet.2", "bbox": [289, 149, 395, 319]}, {"id": "chair.3", "bbox": [0, 394, 235, 680]}, {"id": "child.4", "bbox": [247, 309, 394, 681]}, {"id": "door.5", "bbox": [290, 184, 392, 319]}, {"id": "hair.6", "bbox": [245, 308, 368, 427]}, {"id": "hair.7", "bbox": [170, 69, 255, 157]}, {"id": "man.8", "bbox": [412, 50, 674, 567]}, {"id": "paper.9", "bbox": [103, 171, 201, 269]}, {"id": "shirt.10", "bbox": [271, 394, 384, 553]}, {"id": "shirt.11", "bbox": [461, 84, 664, 260]}, {"id": "woman.12", "bbox": [735, 241, 1023, 681]}, {"id": "woman.13", "bbox": [90, 67, 266, 432]}, {"id": "girl.14", "bbox": [221, 243, 435, 516]}, {"id": "seat.15", "bbox": [2, 435, 223, 574]}, {"id": "child.16", "bbox": [230, 288, 386, 569]}, {"id": "child.17", "bbox": [153, 246, 428, 536]}]
[{"subject": "cabinet.2", "predicate": "has", "object": "door.5"}, {"subject": "chair.3", "predicate": "with", "object": "seat.15"}, {"subject": "hair.6", "predicate": "on", "object": "child.16"}, {"subject": "shirt.10", "predicate": "on", "object": "child.4"}]
713036
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bike.1", "bbox": [778, 334, 835, 381]}, {"id": "building.2", "bbox": [0, 30, 69, 349]}, {"id": "building.3", "bbox": [244, 10, 357, 142]}, {"id": "leg.4", "bbox": [415, 292, 568, 577]}, {"id": "people.5", "bbox": [571, 317, 785, 352]}, {"id": "person.6", "bbox": [801, 300, 829, 388]}, {"id": "pole.7", "bbox": [249, 138, 273, 327]}, {"id": "sidewalk.8", "bbox": [0, 339, 440, 433]}, {"id": "sidewalk.9", "bbox": [559, 343, 1022, 431]}, {"id": "sign.10", "bbox": [410, 47, 590, 290]}, {"id": "man.11", "bbox": [798, 296, 831, 396]}]
[{"subject": "man.11", "predicate": "on", "object": "sidewalk.9"}, {"subject": "person.6", "predicate": "near", "object": "bike.1"}, {"subject": "people.5", "predicate": "on", "object": "sidewalk.9"}]
713037
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [460, 478, 677, 598]}, {"id": "bench.2", "bbox": [635, 384, 741, 440]}, {"id": "fence.3", "bbox": [0, 0, 1024, 458]}, {"id": "shoe.4", "bbox": [35, 471, 103, 561]}, {"id": "hat.5", "bbox": [728, 48, 802, 91]}, {"id": "head.6", "bbox": [725, 48, 801, 149]}, {"id": "head.7", "bbox": [412, 398, 500, 474]}, {"id": "helmet.8", "bbox": [412, 397, 514, 460]}, {"id": "letter.9", "bbox": [762, 195, 797, 249]}, {"id": "number.10", "bbox": [345, 458, 432, 497]}, {"id": "pant.11", "bbox": [721, 297, 918, 608]}, {"id": "pant.12", "bbox": [89, 489, 384, 600]}, {"id": "player.13", "bbox": [34, 397, 675, 601]}, {"id": "pole.14", "bbox": [195, 0, 222, 419]}, {"id": "shirt.15", "bbox": [709, 135, 923, 334]}, {"id": "shirt.16", "bbox": [256, 444, 636, 591]}, {"id": "shoe.17", "bbox": [749, 569, 911, 609]}, {"id": "man.18", "bbox": [711, 56, 937, 623]}]
[{"subject": "player.13", "predicate": "in", "object": "shirt.16"}, {"subject": "shirt.15", "predicate": "has", "object": "letter.9"}, {"subject": "player.13", "predicate": "wearing", "object": "pant.12"}, {"subject": "man.18", "predicate": "wearing", "object": "shirt.15"}, {"subject": "pole.14", "predicate": "of", "object": "fence.3"}, {"subject": "player.13", "predicate": "wearing", "object": "helmet.8"}, {"subject": "number.10", "predicate": "on", "object": "shirt.16"}, {"subject": "hat.5", "predicate": "on", "object": "head.6"}, {"subject": "helmet.8", "predicate": "on", "object": "head.7"}, {"subject": "bench.2", "predicate": "behind", "object": "fence.3"}]
713038
Generate a structured scene graph for an image of size (400 x 300) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (400 x 300) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [0, 68, 113, 298]}, {"id": "boy.2", "bbox": [281, 45, 399, 291]}, {"id": "building.3", "bbox": [0, 0, 203, 62]}, {"id": "ear.4", "bbox": [21, 6, 37, 32]}, {"id": "hair.5", "bbox": [0, 0, 65, 54]}, {"id": "hair.6", "bbox": [292, 45, 360, 112]}, {"id": "handle.7", "bbox": [307, 265, 333, 289]}, {"id": "jean.8", "bbox": [105, 196, 194, 299]}, {"id": "jean.9", "bbox": [281, 177, 397, 291]}, {"id": "kite.10", "bbox": [127, 8, 221, 212]}, {"id": "nose.11", "bbox": [77, 15, 91, 36]}, {"id": "shirt.12", "bbox": [0, 48, 168, 244]}, {"id": "sidewalk.13", "bbox": [105, 0, 326, 80]}, {"id": "street.14", "bbox": [0, 0, 400, 300]}, {"id": "woman.15", "bbox": [0, 0, 195, 292]}, {"id": "man.16", "bbox": [260, 42, 385, 296]}, {"id": "person.17", "bbox": [272, 39, 397, 285]}, {"id": "shirt.18", "bbox": [294, 78, 385, 190]}]
[{"subject": "woman.15", "predicate": "has", "object": "kite.10"}, {"subject": "woman.15", "predicate": "has", "object": "hair.5"}, {"subject": "nose.11", "predicate": "on", "object": "woman.15"}, {"subject": "person.17", "predicate": "has", "object": "hair.6"}, {"subject": "man.16", "predicate": "wearing", "object": "shirt.18"}, {"subject": "woman.15", "predicate": "wearing", "object": "jean.8"}, {"subject": "man.16", "predicate": "wearing", "object": "jean.9"}]
713039
Generate a structured scene graph for an image of size (1024 x 742) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 742) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [412, 128, 584, 362]}, {"id": "chair.2", "bbox": [625, 181, 815, 275]}, {"id": "chair.3", "bbox": [212, 183, 406, 275]}, {"id": "chair.4", "bbox": [920, 177, 1021, 252]}, {"id": "chair.5", "bbox": [894, 110, 1017, 182]}, {"id": "chair.6", "bbox": [485, 118, 632, 194]}, {"id": "chair.7", "bbox": [663, 110, 828, 183]}, {"id": "glove.8", "bbox": [368, 322, 467, 405]}, {"id": "glove.9", "bbox": [85, 56, 152, 121]}, {"id": "hat.10", "bbox": [331, 4, 403, 41]}, {"id": "helmet.11", "bbox": [792, 107, 905, 241]}, {"id": "helmet.12", "bbox": [417, 86, 526, 168]}, {"id": "jacket.13", "bbox": [475, 62, 662, 192]}, {"id": "man.14", "bbox": [267, 6, 436, 124]}, {"id": "person.15", "bbox": [40, 5, 220, 153]}, {"id": "person.16", "bbox": [464, 4, 664, 201]}, {"id": "player.17", "bbox": [384, 92, 720, 722]}, {"id": "seat.18", "bbox": [4, 182, 202, 272]}, {"id": "seat.19", "bbox": [213, 180, 390, 275]}, {"id": "person.20", "bbox": [258, 18, 449, 132]}, {"id": "woman.21", "bbox": [51, 21, 212, 190]}]
[{"subject": "player.17", "predicate": "wearing", "object": "glove.8"}, {"subject": "man.14", "predicate": "wearing", "object": "hat.10"}]
713040
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bowl.1", "bbox": [82, 495, 224, 566]}, {"id": "cup.2", "bbox": [181, 150, 216, 207]}, {"id": "face.3", "bbox": [460, 181, 547, 303]}, {"id": "face.4", "bbox": [157, 242, 247, 354]}, {"id": "face.5", "bbox": [719, 234, 817, 359]}, {"id": "glass.6", "bbox": [494, 507, 584, 628]}, {"id": "glass.7", "bbox": [673, 13, 1023, 141]}, {"id": "people.8", "bbox": [0, 202, 321, 539]}, {"id": "person.9", "bbox": [664, 213, 1019, 541]}, {"id": "person.10", "bbox": [337, 152, 646, 543]}, {"id": "person.11", "bbox": [45, 42, 261, 344]}, {"id": "plate.12", "bbox": [0, 586, 362, 756]}, {"id": "plate.13", "bbox": [869, 531, 1023, 605]}, {"id": "shirt.14", "bbox": [335, 296, 642, 542]}, {"id": "table.15", "bbox": [0, 539, 1024, 767]}, {"id": "woman.16", "bbox": [12, 197, 330, 606]}, {"id": "woman.17", "bbox": [327, 133, 667, 629]}, {"id": "woman.18", "bbox": [18, 159, 1020, 597]}]
[{"subject": "woman.16", "predicate": "has", "object": "face.4"}, {"subject": "woman.17", "predicate": "has", "object": "face.3"}, {"subject": "woman.18", "predicate": "has", "object": "face.5"}, {"subject": "shirt.14", "predicate": "on", "object": "woman.17"}, {"subject": "woman.18", "predicate": "at", "object": "table.15"}]
713041
Generate a structured scene graph for an image of size (768 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (768 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "hair.1", "bbox": [308, 83, 577, 308]}, {"id": "jean.2", "bbox": [692, 499, 765, 732]}, {"id": "jean.3", "bbox": [0, 670, 218, 922]}, {"id": "woman.4", "bbox": [69, 95, 731, 1021]}, {"id": "man.5", "bbox": [0, 234, 219, 942]}, {"id": "paper.6", "bbox": [103, 649, 322, 878]}, {"id": "shirt.7", "bbox": [294, 481, 509, 666]}, {"id": "shirt.8", "bbox": [0, 330, 132, 681]}, {"id": "shirt.9", "bbox": [675, 349, 767, 505]}, {"id": "shoe.10", "bbox": [168, 865, 222, 950]}]
[{"subject": "man.5", "predicate": "wearing", "object": "jean.3"}]
713042
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "vehicle.1", "bbox": [0, 12, 1024, 590]}, {"id": "door.2", "bbox": [665, 375, 704, 442]}, {"id": "tail.3", "bbox": [735, 19, 1020, 491]}, {"id": "tire.4", "bbox": [792, 644, 830, 687]}, {"id": "tire.5", "bbox": [258, 607, 320, 661]}, {"id": "tire.6", "bbox": [971, 644, 1013, 684]}, {"id": "tire.7", "bbox": [0, 584, 54, 645]}, {"id": "truck.8", "bbox": [700, 504, 1021, 687]}, {"id": "truck.9", "bbox": [0, 422, 386, 701]}, {"id": "vehicle.10", "bbox": [0, 23, 1021, 689]}, {"id": "wheel.11", "bbox": [323, 539, 392, 577]}, {"id": "window.12", "bbox": [158, 375, 387, 398]}, {"id": "wing.13", "bbox": [839, 291, 1018, 395]}, {"id": "plane.14", "bbox": [6, 182, 1009, 563]}, {"id": "vehicle.15", "bbox": [665, 480, 1020, 745]}, {"id": "vehicle.16", "bbox": [0, 433, 389, 706]}]
[{"subject": "tail.3", "predicate": "of", "object": "vehicle.1"}, {"subject": "door.2", "predicate": "of", "object": "vehicle.1"}, {"subject": "wheel.11", "predicate": "of", "object": "plane.14"}, {"subject": "wing.13", "predicate": "of", "object": "vehicle.1"}, {"subject": "tire.4", "predicate": "on", "object": "vehicle.15"}, {"subject": "tire.6", "predicate": "on", "object": "vehicle.15"}, {"subject": "tire.5", "predicate": "on", "object": "vehicle.16"}, {"subject": "tire.7", "predicate": "on", "object": "vehicle.16"}, {"subject": "tire.5", "predicate": "on", "object": "truck.9"}, {"subject": "tire.7", "predicate": "on", "object": "truck.9"}]
713043
Generate a structured scene graph for an image of size (1024 x 682) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 682) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [223, 184, 340, 243]}, {"id": "building.2", "bbox": [147, 0, 835, 414]}, {"id": "chair.3", "bbox": [456, 254, 661, 497]}, {"id": "dog.4", "bbox": [691, 513, 907, 680]}, {"id": "lamp.5", "bbox": [647, 152, 764, 384]}, {"id": "table.6", "bbox": [0, 615, 173, 680]}, {"id": "table.7", "bbox": [572, 397, 700, 558]}, {"id": "tree.8", "bbox": [0, 12, 285, 648]}, {"id": "woman.9", "bbox": [675, 293, 921, 598]}, {"id": "woman.10", "bbox": [401, 250, 637, 517]}, {"id": "woman.11", "bbox": [209, 81, 521, 676]}, {"id": "table.12", "bbox": [528, 297, 721, 509]}, {"id": "woman.13", "bbox": [499, 217, 683, 509]}, {"id": "tree.14", "bbox": [33, 495, 239, 602]}]
[{"subject": "woman.13", "predicate": "sitting on", "object": "chair.3"}, {"subject": "arm.1", "predicate": "behind", "object": "woman.11"}]
713044
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "fence.1", "bbox": [485, 391, 898, 682]}, {"id": "fence.2", "bbox": [309, 296, 679, 447]}, {"id": "giraffe.3", "bbox": [393, 135, 1020, 577]}, {"id": "giraffe.4", "bbox": [601, 0, 1022, 254]}, {"id": "giraffe.5", "bbox": [494, 264, 790, 687]}, {"id": "hair.6", "bbox": [241, 460, 394, 708]}, {"id": "leg.7", "bbox": [735, 428, 792, 656]}, {"id": "neck.8", "bbox": [527, 185, 915, 349]}, {"id": "neck.9", "bbox": [777, 0, 1023, 258]}, {"id": "shirt.10", "bbox": [244, 622, 491, 766]}, {"id": "woman.11", "bbox": [242, 459, 570, 764]}, {"id": "railing.12", "bbox": [516, 415, 694, 547]}]
[{"subject": "woman.11", "predicate": "has", "object": "hair.6"}, {"subject": "woman.11", "predicate": "has", "object": "shirt.10"}, {"subject": "giraffe.4", "predicate": "has", "object": "neck.9"}, {"subject": "giraffe.3", "predicate": "has", "object": "neck.8"}, {"subject": "giraffe.3", "predicate": "has", "object": "leg.7"}]
713045
Generate a structured scene graph for an image of size (1024 x 682) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 682) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "person.1", "bbox": [477, 240, 570, 323]}, {"id": "train.2", "bbox": [247, 105, 868, 564]}, {"id": "window.3", "bbox": [296, 205, 391, 352]}, {"id": "truck.4", "bbox": [3, 330, 151, 404]}]
[{"subject": "window.3", "predicate": "on", "object": "train.2"}]
713046
Generate a structured scene graph for an image of size (1024 x 663) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 663) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [1, 202, 69, 485]}, {"id": "coat.2", "bbox": [360, 0, 623, 264]}, {"id": "glass.3", "bbox": [393, 137, 494, 179]}, {"id": "glass.4", "bbox": [122, 110, 223, 136]}, {"id": "guy.5", "bbox": [19, 53, 307, 661]}, {"id": "hand.6", "bbox": [124, 399, 188, 480]}, {"id": "hand.7", "bbox": [405, 291, 485, 395]}, {"id": "hand.8", "bbox": [210, 110, 290, 166]}, {"id": "person.9", "bbox": [384, 10, 635, 190]}, {"id": "jacket.10", "bbox": [0, 202, 74, 479]}, {"id": "woman.11", "bbox": [366, 0, 629, 280]}]
[{"subject": "woman.11", "predicate": "wearing", "object": "coat.2"}]
713047
Generate a structured scene graph for an image of size (768 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (768 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bike.1", "bbox": [228, 454, 765, 978]}, {"id": "bike.2", "bbox": [331, 568, 728, 726]}, {"id": "building.3", "bbox": [264, 286, 459, 494]}, {"id": "building.4", "bbox": [0, 0, 296, 544]}, {"id": "man.5", "bbox": [120, 410, 236, 786]}, {"id": "guy.6", "bbox": [220, 437, 284, 593]}, {"id": "light.7", "bbox": [645, 174, 756, 502]}, {"id": "motorcycle.8", "bbox": [330, 511, 745, 728]}, {"id": "motorcycle.9", "bbox": [412, 485, 658, 563]}, {"id": "short.10", "bbox": [123, 568, 218, 702]}, {"id": "street.11", "bbox": [0, 491, 767, 1020]}, {"id": "table.12", "bbox": [24, 495, 134, 550]}, {"id": "tire.13", "bbox": [234, 761, 425, 941]}, {"id": "tire.14", "bbox": [330, 617, 443, 734]}, {"id": "tree.15", "bbox": [473, 379, 559, 458]}, {"id": "window.16", "bbox": [170, 240, 191, 322]}, {"id": "woman.17", "bbox": [250, 447, 355, 720]}, {"id": "motorcycle.18", "bbox": [229, 558, 764, 973]}, {"id": "street.19", "bbox": [0, 488, 486, 721]}]
[{"subject": "man.5", "predicate": "looking at", "object": "motorcycle.18"}, {"subject": "man.5", "predicate": "wearing", "object": "short.10"}]
713048
Generate a structured scene graph for an image of size (1024 x 772) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 772) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "boat.1", "bbox": [22, 270, 1021, 739]}, {"id": "woman.2", "bbox": [0, 0, 703, 770]}, {"id": "child.3", "bbox": [696, 459, 1021, 768]}, {"id": "person.4", "bbox": [384, 100, 609, 534]}, {"id": "dog.5", "bbox": [522, 419, 744, 771]}, {"id": "person.6", "bbox": [559, 168, 803, 475]}, {"id": "man.7", "bbox": [499, 165, 679, 478]}, {"id": "hat.8", "bbox": [0, 0, 211, 166]}, {"id": "cup.9", "bbox": [294, 541, 387, 661]}, {"id": "finger.10", "bbox": [558, 167, 608, 210]}, {"id": "shirt.11", "bbox": [652, 232, 802, 350]}, {"id": "hand.12", "bbox": [261, 621, 401, 767]}, {"id": "dog.13", "bbox": [578, 276, 673, 371]}, {"id": "finger.14", "bbox": [352, 623, 399, 707]}, {"id": "short.15", "bbox": [591, 334, 753, 395]}, {"id": "shirt.16", "bbox": [582, 222, 684, 321]}, {"id": "short.17", "bbox": [525, 312, 611, 374]}, {"id": "logo.18", "bbox": [18, 7, 94, 45]}, {"id": "person.19", "bbox": [161, 133, 362, 293]}, {"id": "lady.20", "bbox": [0, 78, 706, 768]}]
[{"subject": "woman.2", "predicate": "holding", "object": "cup.9"}, {"subject": "woman.2", "predicate": "wearing", "object": "hat.8"}, {"subject": "man.7", "predicate": "wearing", "object": "short.17"}, {"subject": "person.4", "predicate": "has", "object": "finger.10"}, {"subject": "dog.5", "predicate": "standing on", "object": "boat.1"}, {"subject": "person.6", "predicate": "wearing", "object": "shirt.11"}, {"subject": "man.7", "predicate": "wearing", "object": "shirt.16"}, {"subject": "hat.8", "predicate": "with", "object": "logo.18"}, {"subject": "cup.9", "predicate": "in", "object": "lady.20"}, {"subject": "cup.9", "predicate": "in", "object": "hand.12"}, {"subject": "person.6", "predicate": "wearing", "object": "short.15"}, {"subject": "dog.13", "predicate": "on", "object": "person.6"}, {"subject": "dog.5", "predicate": "near", "object": "woman.2"}]
713050
Generate a structured scene graph for an image of size (683 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (683 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "book.1", "bbox": [572, 708, 678, 738]}, {"id": "woman.2", "bbox": [139, 113, 510, 835]}, {"id": "hair.3", "bbox": [236, 115, 376, 272]}, {"id": "short.4", "bbox": [217, 386, 403, 546]}, {"id": "shirt.5", "bbox": [235, 203, 368, 417]}, {"id": "window.6", "bbox": [15, 33, 499, 137]}, {"id": "woman.7", "bbox": [117, 106, 488, 841]}]
[{"subject": "woman.2", "predicate": "wearing", "object": "shirt.5"}, {"subject": "woman.2", "predicate": "wearing", "object": "short.4"}, {"subject": "woman.2", "predicate": "has", "object": "hair.3"}, {"subject": "woman.7", "predicate": "has", "object": "hair.3"}, {"subject": "short.4", "predicate": "of", "object": "woman.7"}, {"subject": "hair.3", "predicate": "of", "object": "woman.7"}]
713051
Generate a structured scene graph for an image of size (1024 x 866) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 866) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "car.1", "bbox": [145, 563, 254, 608]}, {"id": "leaf.2", "bbox": [526, 244, 947, 367]}, {"id": "pole.3", "bbox": [662, 0, 786, 386]}, {"id": "pole.4", "bbox": [5, 1, 775, 486]}, {"id": "pole.5", "bbox": [204, 199, 267, 545]}, {"id": "truck.6", "bbox": [296, 317, 808, 768]}, {"id": "sign.7", "bbox": [921, 27, 1017, 433]}, {"id": "tree.8", "bbox": [41, 432, 242, 571]}, {"id": "truck.9", "bbox": [11, 544, 176, 663]}, {"id": "wire.10", "bbox": [245, 279, 399, 366]}, {"id": "wire.11", "bbox": [241, 210, 402, 317]}, {"id": "wire.12", "bbox": [237, 131, 402, 247]}, {"id": "wire.13", "bbox": [658, 0, 749, 266]}, {"id": "wire.14", "bbox": [256, 126, 404, 382]}, {"id": "wire.15", "bbox": [183, 210, 333, 385]}, {"id": "leaf.16", "bbox": [599, 266, 934, 388]}, {"id": "tree.17", "bbox": [529, 246, 938, 509]}, {"id": "tree.18", "bbox": [138, 403, 249, 551]}]
[{"subject": "car.1", "predicate": "in front of", "object": "truck.9"}, {"subject": "wire.12", "predicate": "on", "object": "pole.4"}, {"subject": "wire.11", "predicate": "on", "object": "pole.4"}, {"subject": "wire.10", "predicate": "on", "object": "pole.4"}, {"subject": "wire.14", "predicate": "on", "object": "pole.4"}, {"subject": "wire.13", "predicate": "on", "object": "pole.3"}, {"subject": "wire.15", "predicate": "on", "object": "pole.5"}, {"subject": "leaf.16", "predicate": "on", "object": "tree.17"}, {"subject": "leaf.2", "predicate": "on", "object": "tree.17"}]
713052
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "boy.1", "bbox": [498, 183, 658, 565]}, {"id": "boy.2", "bbox": [368, 166, 585, 636]}, {"id": "cap.3", "bbox": [976, 214, 1021, 249]}, {"id": "car.4", "bbox": [16, 257, 965, 561]}, {"id": "fence.5", "bbox": [820, 76, 1022, 568]}, {"id": "fence.6", "bbox": [0, 0, 1023, 567]}, {"id": "shoe.7", "bbox": [368, 557, 420, 627]}, {"id": "shoe.8", "bbox": [545, 585, 585, 634]}, {"id": "hat.9", "bbox": [303, 89, 385, 123]}, {"id": "helmet.10", "bbox": [493, 167, 584, 245]}, {"id": "man.11", "bbox": [219, 89, 398, 561]}, {"id": "man.12", "bbox": [553, 101, 649, 563]}, {"id": "pant.13", "bbox": [409, 392, 573, 582]}, {"id": "pant.14", "bbox": [277, 305, 396, 562]}, {"id": "shirt.15", "bbox": [231, 164, 387, 302]}]
[{"subject": "boy.2", "predicate": "wearing", "object": "pant.13"}, {"subject": "man.11", "predicate": "wearing", "object": "pant.14"}, {"subject": "man.11", "predicate": "wearing", "object": "shirt.15"}, {"subject": "boy.2", "predicate": "wearing", "object": "helmet.10"}, {"subject": "man.11", "predicate": "wearing", "object": "hat.9"}]
713053
Generate a structured scene graph for an image of size (1024 x 576) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 576) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [380, 315, 422, 369]}, {"id": "bench.2", "bbox": [397, 213, 531, 291]}, {"id": "book.3", "bbox": [650, 367, 751, 411]}, {"id": "handle.4", "bbox": [34, 262, 378, 500]}, {"id": "pillow.5", "bbox": [865, 447, 1023, 557]}, {"id": "pillow.6", "bbox": [903, 300, 1022, 376]}, {"id": "pillow.7", "bbox": [755, 458, 1022, 574]}, {"id": "table.8", "bbox": [408, 145, 597, 284]}, {"id": "tile.9", "bbox": [392, 240, 627, 344]}, {"id": "table.10", "bbox": [28, 258, 398, 397]}, {"id": "window.11", "bbox": [600, 40, 944, 291]}, {"id": "light.12", "bbox": [380, 5, 452, 34]}, {"id": "table.13", "bbox": [481, 357, 767, 530]}, {"id": "stand.14", "bbox": [30, 254, 426, 404]}]
[{"subject": "bench.2", "predicate": "for", "object": "table.8"}, {"subject": "book.3", "predicate": "on", "object": "table.13"}]
713055
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [79, 48, 920, 763]}, {"id": "clock.2", "bbox": [469, 564, 610, 696]}, {"id": "roof.3", "bbox": [131, 686, 903, 723]}, {"id": "tower.4", "bbox": [385, 49, 670, 724]}, {"id": "tree.5", "bbox": [21, 627, 565, 766]}, {"id": "handle.6", "bbox": [520, 604, 575, 659]}, {"id": "tower.7", "bbox": [148, 51, 902, 726]}]
[{"subject": "clock.2", "predicate": "on", "object": "tower.4"}, {"subject": "handle.6", "predicate": "on", "object": "clock.2"}, {"subject": "roof.3", "predicate": "of", "object": "building.1"}, {"subject": "clock.2", "predicate": "on", "object": "building.1"}]
713056
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "car.1", "bbox": [356, 29, 692, 143]}, {"id": "handle.2", "bbox": [504, 204, 547, 268]}, {"id": "street.3", "bbox": [0, 93, 1023, 644]}, {"id": "umbrella.4", "bbox": [691, 211, 869, 336]}, {"id": "umbrella.5", "bbox": [390, 461, 928, 703]}, {"id": "umbrella.6", "bbox": [506, 398, 655, 502]}, {"id": "umbrella.7", "bbox": [312, 282, 440, 360]}, {"id": "umbrella.8", "bbox": [87, 393, 366, 604]}, {"id": "umbrella.9", "bbox": [471, 200, 546, 355]}, {"id": "umbrella.10", "bbox": [497, 543, 864, 709]}, {"id": "street.11", "bbox": [34, 71, 989, 411]}]
[{"subject": "umbrella.5", "predicate": "on", "object": "street.3"}]
713057
Generate a structured scene graph for an image of size (1024 x 685) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 685) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [90, 344, 318, 472]}, {"id": "building.2", "bbox": [3, 395, 96, 484]}, {"id": "building.3", "bbox": [281, 308, 591, 476]}, {"id": "car.4", "bbox": [0, 474, 62, 526]}, {"id": "car.5", "bbox": [485, 465, 577, 498]}, {"id": "car.6", "bbox": [125, 471, 302, 549]}, {"id": "car.7", "bbox": [672, 463, 799, 503]}, {"id": "light.8", "bbox": [137, 168, 370, 642]}, {"id": "pole.9", "bbox": [356, 394, 439, 610]}, {"id": "sidewalk.10", "bbox": [95, 536, 1023, 684]}, {"id": "sign.11", "bbox": [353, 394, 449, 528]}, {"id": "street.12", "bbox": [1, 444, 1020, 683]}, {"id": "tree.13", "bbox": [0, 257, 98, 426]}]
[{"subject": "sign.11", "predicate": "on", "object": "pole.9"}, {"subject": "pole.9", "predicate": "for", "object": "sign.11"}, {"subject": "car.6", "predicate": "near", "object": "light.8"}, {"subject": "light.8", "predicate": "over", "object": "street.12"}, {"subject": "car.6", "predicate": "on", "object": "street.12"}, {"subject": "car.4", "predicate": "on", "object": "street.12"}]
713058
Generate a structured scene graph for an image of size (1024 x 684) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 684) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [669, 169, 841, 281]}, {"id": "hair.2", "bbox": [256, 454, 403, 599]}, {"id": "hand.3", "bbox": [375, 388, 413, 444]}, {"id": "hat.4", "bbox": [388, 6, 654, 186]}, {"id": "head.5", "bbox": [256, 454, 363, 556]}, {"id": "person.6", "bbox": [400, 18, 628, 348]}, {"id": "shirt.7", "bbox": [431, 112, 629, 262]}, {"id": "sidewalk.8", "bbox": [0, 0, 1024, 468]}, {"id": "vegetable.9", "bbox": [85, 22, 482, 415]}, {"id": "wheel.10", "bbox": [676, 339, 982, 459]}, {"id": "woman.11", "bbox": [215, 366, 499, 599]}, {"id": "bike.12", "bbox": [223, 175, 947, 428]}, {"id": "hand.13", "bbox": [376, 381, 428, 453]}, {"id": "bike.14", "bbox": [415, 153, 988, 471]}, {"id": "paper.15", "bbox": [337, 365, 404, 448]}]
[{"subject": "hand.3", "predicate": "of", "object": "woman.11"}, {"subject": "woman.11", "predicate": "holding", "object": "paper.15"}]
713061
Generate a structured scene graph for an image of size (1024 x 695) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 695) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "boat.1", "bbox": [0, 0, 966, 667]}, {"id": "letter.2", "bbox": [6, 423, 71, 451]}, {"id": "window.3", "bbox": [543, 319, 676, 381]}, {"id": "window.4", "bbox": [530, 325, 629, 367]}, {"id": "window.5", "bbox": [202, 282, 259, 328]}, {"id": "window.6", "bbox": [238, 279, 274, 321]}, {"id": "window.7", "bbox": [540, 313, 567, 368]}]
[{"subject": "window.5", "predicate": "on", "object": "boat.1"}, {"subject": "window.6", "predicate": "on", "object": "boat.1"}, {"subject": "window.7", "predicate": "on", "object": "boat.1"}, {"subject": "window.4", "predicate": "on", "object": "boat.1"}, {"subject": "window.3", "predicate": "on", "object": "boat.1"}]
713062
Generate a structured scene graph for an image of size (1024 x 681) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 681) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "man.1", "bbox": [191, 221, 357, 663]}, {"id": "box.2", "bbox": [208, 199, 687, 414]}, {"id": "box.3", "bbox": [538, 207, 614, 261]}, {"id": "box.4", "bbox": [604, 202, 672, 260]}, {"id": "hair.5", "bbox": [213, 262, 257, 309]}, {"id": "pant.6", "bbox": [209, 428, 333, 651]}, {"id": "shirt.7", "bbox": [181, 279, 322, 470]}, {"id": "tire.8", "bbox": [346, 510, 485, 646]}, {"id": "truck.9", "bbox": [156, 99, 923, 645]}, {"id": "window.10", "bbox": [847, 242, 923, 338]}, {"id": "man.11", "bbox": [183, 239, 352, 676]}, {"id": "box.12", "bbox": [304, 229, 688, 272]}]
[{"subject": "man.11", "predicate": "wearing", "object": "shirt.7"}, {"subject": "window.10", "predicate": "on", "object": "truck.9"}, {"subject": "box.12", "predicate": "in", "object": "truck.9"}, {"subject": "man.11", "predicate": "wears", "object": "pant.6"}, {"subject": "box.2", "predicate": "in", "object": "truck.9"}, {"subject": "man.1", "predicate": "of", "object": "truck.9"}, {"subject": "hair.5", "predicate": "on", "object": "man.1"}, {"subject": "box.4", "predicate": "in", "object": "truck.9"}, {"subject": "box.3", "predicate": "in", "object": "truck.9"}]
713064
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "child.1", "bbox": [234, 215, 329, 504]}, {"id": "person.2", "bbox": [524, 95, 880, 695]}, {"id": "sheep.3", "bbox": [216, 421, 548, 767]}, {"id": "street.4", "bbox": [0, 300, 1024, 766]}, {"id": "woman.5", "bbox": [31, 0, 200, 542]}]
[{"subject": "person.2", "predicate": "in", "object": "street.4"}, {"subject": "woman.5", "predicate": "on", "object": "street.4"}, {"subject": "sheep.3", "predicate": "in", "object": "street.4"}, {"subject": "sheep.3", "predicate": "near", "object": "person.2"}, {"subject": "person.2", "predicate": "with", "object": "sheep.3"}]
713065
Generate a structured scene graph for an image of size (1024 x 678) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 678) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [23, 486, 203, 638]}, {"id": "building.2", "bbox": [624, 0, 774, 83]}, {"id": "person.3", "bbox": [656, 345, 1020, 673]}, {"id": "hair.4", "bbox": [948, 492, 1023, 675]}, {"id": "hat.5", "bbox": [767, 342, 1022, 563]}, {"id": "hat.6", "bbox": [123, 154, 265, 253]}, {"id": "person.7", "bbox": [603, 145, 844, 577]}, {"id": "person.8", "bbox": [59, 145, 377, 604]}, {"id": "shirt.9", "bbox": [825, 501, 989, 674]}, {"id": "table.10", "bbox": [29, 317, 911, 677]}, {"id": "woman.11", "bbox": [66, 154, 362, 535]}]
[{"subject": "person.8", "predicate": "wearing", "object": "hat.6"}, {"subject": "person.8", "predicate": "at", "object": "table.10"}, {"subject": "person.7", "predicate": "at", "object": "table.10"}, {"subject": "person.3", "predicate": "at", "object": "table.10"}, {"subject": "woman.11", "predicate": "wearing", "object": "hat.6"}, {"subject": "person.3", "predicate": "wearing", "object": "hat.5"}]
713066
Generate a structured scene graph for an image of size (1280 x 871) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1280 x 871) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [0, 0, 682, 692]}, {"id": "building.2", "bbox": [850, 225, 945, 622]}, {"id": "bus.3", "bbox": [56, 520, 628, 865]}, {"id": "flag.4", "bbox": [895, 353, 948, 487]}, {"id": "girl.5", "bbox": [905, 660, 958, 810]}, {"id": "letter.6", "bbox": [186, 540, 325, 565]}, {"id": "light.7", "bbox": [570, 142, 641, 208]}, {"id": "light.8", "bbox": [575, 267, 642, 330]}, {"id": "pole.9", "bbox": [895, 338, 1041, 473]}, {"id": "sidewalk.10", "bbox": [695, 690, 1230, 870]}, {"id": "sign.11", "bbox": [567, 455, 712, 605]}, {"id": "sign.12", "bbox": [396, 132, 481, 228]}, {"id": "street.13", "bbox": [0, 662, 1280, 868]}, {"id": "window.14", "bbox": [65, 173, 132, 300]}, {"id": "window.15", "bbox": [286, 0, 471, 422]}, {"id": "window.16", "bbox": [298, 287, 332, 362]}, {"id": "window.17", "bbox": [303, 160, 338, 261]}, {"id": "woman.18", "bbox": [887, 651, 967, 821]}, {"id": "window.19", "bbox": [290, 157, 355, 260]}]
[{"subject": "flag.4", "predicate": "hanging from", "object": "pole.9"}, {"subject": "bus.3", "predicate": "on", "object": "street.13"}, {"subject": "window.14", "predicate": "attached to", "object": "building.1"}, {"subject": "window.16", "predicate": "on", "object": "building.1"}, {"subject": "building.1", "predicate": "has", "object": "window.19"}, {"subject": "window.15", "predicate": "on", "object": "building.1"}, {"subject": "building.1", "predicate": "has", "object": "window.17"}]
713067
Generate a structured scene graph for an image of size (1024 x 731) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 731) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [0, 1, 1024, 239]}, {"id": "face.2", "bbox": [734, 168, 837, 309]}, {"id": "glass.3", "bbox": [734, 219, 848, 243]}, {"id": "hand.4", "bbox": [567, 375, 688, 464]}, {"id": "hand.5", "bbox": [178, 229, 247, 285]}, {"id": "head.6", "bbox": [734, 152, 863, 309]}, {"id": "paper.7", "bbox": [133, 198, 201, 236]}, {"id": "pillow.8", "bbox": [641, 138, 1022, 344]}, {"id": "window.9", "bbox": [224, 0, 391, 185]}, {"id": "window.10", "bbox": [545, 135, 745, 208]}, {"id": "window.11", "bbox": [0, 0, 73, 119]}, {"id": "window.12", "bbox": [755, 0, 1022, 139]}, {"id": "window.13", "bbox": [248, 123, 331, 187]}, {"id": "window.14", "bbox": [548, 1, 760, 206]}, {"id": "window.15", "bbox": [394, 130, 543, 198]}, {"id": "window.16", "bbox": [163, 73, 233, 137]}, {"id": "window.17", "bbox": [0, 120, 105, 175]}, {"id": "window.18", "bbox": [386, 0, 555, 129]}, {"id": "window.19", "bbox": [561, 0, 767, 138]}]
[{"subject": "window.17", "predicate": "on", "object": "building.1"}, {"subject": "window.9", "predicate": "on", "object": "building.1"}, {"subject": "window.14", "predicate": "on", "object": "building.1"}, {"subject": "window.12", "predicate": "on", "object": "building.1"}, {"subject": "window.11", "predicate": "on", "object": "building.1"}, {"subject": "window.18", "predicate": "on", "object": "building.1"}, {"subject": "window.19", "predicate": "on", "object": "building.1"}, {"subject": "window.10", "predicate": "on", "object": "building.1"}, {"subject": "window.15", "predicate": "on", "object": "building.1"}, {"subject": "window.13", "predicate": "on", "object": "building.1"}, {"subject": "window.16", "predicate": "on", "object": "building.1"}, {"subject": "glass.3", "predicate": "on", "object": "face.2"}, {"subject": "head.6", "predicate": "on", "object": "pillow.8"}, {"subject": "paper.7", "predicate": "in", "object": "hand.5"}]
713068
Generate a structured scene graph for an image of size (1280 x 960) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1280 x 960) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [196, 436, 435, 507]}, {"id": "board.2", "bbox": [247, 843, 983, 887]}, {"id": "boot.3", "bbox": [513, 800, 567, 890]}, {"id": "boot.4", "bbox": [641, 797, 692, 883]}, {"id": "boot.5", "bbox": [368, 793, 432, 887]}, {"id": "boot.6", "bbox": [785, 781, 846, 875]}, {"id": "person.7", "bbox": [196, 363, 607, 885]}, {"id": "coat.8", "bbox": [511, 335, 937, 628]}, {"id": "coat.9", "bbox": [252, 440, 602, 645]}, {"id": "glove.10", "bbox": [888, 308, 962, 405]}, {"id": "hat.11", "bbox": [446, 367, 517, 460]}, {"id": "hat.12", "bbox": [695, 343, 765, 410]}, {"id": "man.13", "bbox": [505, 307, 966, 880]}, {"id": "pant.14", "bbox": [380, 638, 555, 803]}, {"id": "person.15", "bbox": [202, 353, 567, 896]}, {"id": "people.16", "bbox": [500, 317, 1022, 882]}]
[{"subject": "glove.10", "predicate": "on", "object": "man.13"}, {"subject": "boot.4", "predicate": "on", "object": "man.13"}, {"subject": "hat.12", "predicate": "on", "object": "man.13"}, {"subject": "hat.11", "predicate": "on", "object": "person.15"}, {"subject": "person.15", "predicate": "on", "object": "board.2"}, {"subject": "people.16", "predicate": "on", "object": "board.2"}]
713069
Generate a structured scene graph for an image of size (768 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (768 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "chair.1", "bbox": [0, 708, 186, 1022]}, {"id": "jacket.2", "bbox": [80, 711, 239, 1023]}]
[{"subject": "jacket.2", "predicate": "on", "object": "chair.1"}]
713070
Generate a structured scene graph for an image of size (1024 x 681) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 681) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "man.1", "bbox": [104, 346, 166, 514]}, {"id": "man.2", "bbox": [936, 390, 1010, 498]}, {"id": "building.3", "bbox": [6, 3, 1019, 516]}, {"id": "window.4", "bbox": [12, 170, 701, 363]}, {"id": "window.5", "bbox": [291, 157, 707, 369]}]
[{"subject": "building.3", "predicate": "has", "object": "window.4"}, {"subject": "building.3", "predicate": "has", "object": "window.5"}]
713073
Generate a structured scene graph for an image of size (1024 x 681) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 681) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "beach.1", "bbox": [764, 263, 852, 367]}, {"id": "bench.2", "bbox": [311, 164, 808, 679]}, {"id": "building.3", "bbox": [0, 0, 850, 681]}, {"id": "cat.4", "bbox": [485, 297, 694, 415]}, {"id": "sidewalk.5", "bbox": [662, 322, 1024, 680]}, {"id": "man.6", "bbox": [904, 274, 935, 342]}, {"id": "bench.7", "bbox": [760, 264, 853, 359]}]
[{"subject": "bench.7", "predicate": "along", "object": "sidewalk.5"}]
713074
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [91, 391, 186, 462]}, {"id": "bed.2", "bbox": [0, 186, 883, 682]}, {"id": "bed.3", "bbox": [257, 220, 880, 682]}, {"id": "curtain.4", "bbox": [106, 0, 362, 342]}, {"id": "door.5", "bbox": [0, 0, 155, 414]}, {"id": "man.6", "bbox": [127, 251, 592, 610]}, {"id": "phone.7", "bbox": [288, 229, 343, 280]}, {"id": "pillow.8", "bbox": [368, 201, 501, 279]}, {"id": "pillow.9", "bbox": [620, 216, 811, 336]}, {"id": "shirt.10", "bbox": [419, 286, 571, 381]}, {"id": "tile.11", "bbox": [818, 379, 1022, 602]}, {"id": "tile.12", "bbox": [785, 550, 1022, 682]}, {"id": "tile.13", "bbox": [61, 540, 361, 682]}, {"id": "tile.14", "bbox": [0, 456, 206, 638]}, {"id": "tile.15", "bbox": [16, 640, 138, 681]}, {"id": "table.16", "bbox": [283, 195, 370, 278]}]
[{"subject": "man.6", "predicate": "between", "object": "bed.2"}, {"subject": "phone.7", "predicate": "on", "object": "table.16"}, {"subject": "man.6", "predicate": "between", "object": "bed.3"}, {"subject": "pillow.9", "predicate": "on", "object": "bed.3"}, {"subject": "bag.1", "predicate": "on", "object": "bed.2"}, {"subject": "man.6", "predicate": "wearing", "object": "shirt.10"}]
713076
Generate a structured scene graph for an image of size (1024 x 678) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 678) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bowl.1", "bbox": [424, 86, 525, 181]}, {"id": "counter.2", "bbox": [78, 204, 737, 493]}, {"id": "cup.3", "bbox": [203, 0, 308, 145]}, {"id": "pizza.4", "bbox": [161, 446, 568, 619]}, {"id": "man.5", "bbox": [637, 0, 1022, 678]}, {"id": "person.6", "bbox": [257, 0, 1007, 678]}, {"id": "plate.7", "bbox": [345, 240, 659, 388]}, {"id": "shirt.8", "bbox": [746, 357, 949, 677]}, {"id": "table.9", "bbox": [84, 276, 791, 428]}]
[{"subject": "person.6", "predicate": "has", "object": "shirt.8"}]
713077
Generate a structured scene graph for an image of size (681 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (681 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "man.1", "bbox": [239, 258, 446, 473]}, {"id": "building.2", "bbox": [351, 4, 673, 527]}, {"id": "building.3", "bbox": [23, 286, 345, 499]}, {"id": "car.4", "bbox": [138, 476, 239, 504]}, {"id": "hair.5", "bbox": [384, 264, 444, 319]}, {"id": "leaf.6", "bbox": [233, 873, 370, 909]}, {"id": "shirt.7", "bbox": [243, 260, 414, 427]}, {"id": "skateboard.8", "bbox": [308, 493, 359, 542]}, {"id": "street.9", "bbox": [29, 476, 293, 504]}, {"id": "vehicle.10", "bbox": [139, 470, 244, 508]}]
[{"subject": "man.1", "predicate": "wearing", "object": "shirt.7"}, {"subject": "man.1", "predicate": "has", "object": "hair.5"}, {"subject": "car.4", "predicate": "parked on", "object": "street.9"}]
713078
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "desk.1", "bbox": [0, 408, 395, 681]}, {"id": "laptop.2", "bbox": [0, 323, 262, 498]}, {"id": "screen.3", "bbox": [240, 224, 424, 368]}, {"id": "screen.4", "bbox": [809, 309, 1006, 422]}, {"id": "screen.5", "bbox": [798, 183, 1022, 357]}, {"id": "screen.6", "bbox": [621, 212, 771, 316]}, {"id": "screen.7", "bbox": [542, 307, 681, 412]}, {"id": "screen.8", "bbox": [429, 233, 579, 357]}, {"id": "screen.9", "bbox": [0, 333, 180, 453]}, {"id": "table.10", "bbox": [0, 370, 1024, 682]}]
[{"subject": "laptop.2", "predicate": "on", "object": "desk.1"}]
713079
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [187, 238, 270, 318]}, {"id": "man.2", "bbox": [181, 45, 250, 236]}, {"id": "man.3", "bbox": [104, 12, 195, 313]}, {"id": "man.4", "bbox": [477, 45, 546, 243]}, {"id": "pant.5", "bbox": [502, 156, 548, 209]}, {"id": "person.6", "bbox": [46, 26, 122, 229]}, {"id": "person.7", "bbox": [477, 59, 512, 195]}, {"id": "person.8", "bbox": [263, 45, 350, 292]}, {"id": "person.9", "bbox": [325, 37, 397, 258]}, {"id": "person.10", "bbox": [578, 62, 648, 211]}, {"id": "person.11", "bbox": [0, 187, 57, 336]}, {"id": "person.12", "bbox": [223, 38, 277, 216]}, {"id": "person.13", "bbox": [360, 62, 407, 236]}, {"id": "shirt.14", "bbox": [508, 78, 547, 162]}, {"id": "shirt.15", "bbox": [104, 44, 181, 170]}, {"id": "shoe.16", "bbox": [0, 315, 85, 350]}, {"id": "short.17", "bbox": [63, 134, 110, 178]}, {"id": "window.18", "bbox": [731, 0, 848, 165]}, {"id": "person.19", "bbox": [490, 41, 547, 235]}]
[{"subject": "man.4", "predicate": "in", "object": "shirt.14"}, {"subject": "shirt.14", "predicate": "and", "object": "pant.5"}, {"subject": "man.3", "predicate": "in", "object": "shirt.15"}]
713081
Generate a structured scene graph for an image of size (680 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (680 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [481, 66, 676, 287]}, {"id": "building.2", "bbox": [63, 209, 150, 554]}, {"id": "door.3", "bbox": [195, 327, 262, 710]}, {"id": "street.4", "bbox": [50, 538, 97, 623]}, {"id": "train.5", "bbox": [97, 197, 597, 813]}, {"id": "window.6", "bbox": [601, 181, 655, 246]}, {"id": "window.7", "bbox": [215, 349, 259, 406]}, {"id": "window.8", "bbox": [155, 549, 190, 661]}, {"id": "window.9", "bbox": [156, 421, 184, 533]}, {"id": "window.10", "bbox": [366, 356, 488, 539]}, {"id": "window.11", "bbox": [274, 367, 349, 468]}]
[{"subject": "window.6", "predicate": "on", "object": "building.1"}]
713082
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [221, 345, 254, 394]}, {"id": "bench.2", "bbox": [188, 345, 323, 440]}, {"id": "fence.3", "bbox": [61, 312, 841, 429]}, {"id": "hair.4", "bbox": [321, 167, 463, 327]}, {"id": "head.5", "bbox": [556, 157, 783, 374]}, {"id": "head.6", "bbox": [822, 383, 866, 441]}, {"id": "head.7", "bbox": [321, 168, 488, 384]}, {"id": "jacket.8", "bbox": [520, 299, 776, 662]}, {"id": "man.9", "bbox": [791, 130, 1020, 766]}, {"id": "man.10", "bbox": [173, 166, 644, 766]}, {"id": "man.11", "bbox": [0, 134, 200, 768]}, {"id": "shirt.12", "bbox": [346, 344, 520, 760]}, {"id": "tie.13", "bbox": [61, 390, 102, 444]}, {"id": "tie.14", "bbox": [888, 400, 965, 594]}, {"id": "woman.15", "bbox": [453, 135, 860, 766]}, {"id": "woman.16", "bbox": [787, 266, 838, 418]}, {"id": "tie.17", "bbox": [337, 352, 482, 426]}, {"id": "woman.18", "bbox": [564, 152, 771, 386]}, {"id": "flower.19", "bbox": [561, 162, 758, 242]}]
[{"subject": "man.10", "predicate": "wearing", "object": "tie.17"}, {"subject": "man.9", "predicate": "wears", "object": "tie.14"}, {"subject": "man.11", "predicate": "wears", "object": "tie.13"}, {"subject": "man.10", "predicate": "has", "object": "head.7"}, {"subject": "woman.15", "predicate": "has", "object": "head.5"}, {"subject": "flower.19", "predicate": "on", "object": "head.5"}, {"subject": "bag.1", "predicate": "on", "object": "bench.2"}]
713084
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bed.1", "bbox": [238, 231, 874, 681]}, {"id": "bench.2", "bbox": [409, 268, 495, 347]}, {"id": "board.3", "bbox": [486, 236, 943, 430]}, {"id": "chair.4", "bbox": [338, 283, 410, 375]}, {"id": "curtain.5", "bbox": [215, 67, 346, 115]}, {"id": "desk.6", "bbox": [171, 275, 403, 424]}, {"id": "desk.7", "bbox": [139, 220, 449, 355]}, {"id": "light.8", "bbox": [380, 0, 445, 50]}, {"id": "light.9", "bbox": [880, 117, 962, 203]}, {"id": "light.10", "bbox": [857, 305, 918, 375]}, {"id": "pillow.11", "bbox": [459, 246, 723, 456]}, {"id": "pillow.12", "bbox": [473, 272, 702, 439]}, {"id": "pillow.13", "bbox": [465, 289, 591, 368]}, {"id": "window.14", "bbox": [146, 66, 429, 323]}, {"id": "bed.15", "bbox": [277, 177, 829, 623]}, {"id": "board.16", "bbox": [486, 177, 819, 428]}, {"id": "light.17", "bbox": [480, 232, 526, 295]}, {"id": "room.18", "bbox": [103, 6, 1017, 674]}]
[{"subject": "pillow.12", "predicate": "on", "object": "bed.15"}, {"subject": "pillow.12", "predicate": "on", "object": "bed.1"}, {"subject": "curtain.5", "predicate": "on", "object": "window.14"}, {"subject": "pillow.11", "predicate": "on", "object": "bed.1"}, {"subject": "pillow.13", "predicate": "on", "object": "bed.1"}, {"subject": "chair.4", "predicate": "under", "object": "desk.7"}, {"subject": "desk.6", "predicate": "near", "object": "window.14"}, {"subject": "light.17", "predicate": "in", "object": "room.18"}, {"subject": "light.9", "predicate": "in", "object": "room.18"}, {"subject": "light.8", "predicate": "in", "object": "room.18"}]
713085
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bench.1", "bbox": [312, 468, 503, 522]}, {"id": "bench.2", "bbox": [60, 481, 288, 550]}, {"id": "bench.3", "bbox": [556, 482, 881, 607]}, {"id": "coat.4", "bbox": [874, 416, 913, 485]}, {"id": "fence.5", "bbox": [0, 358, 1024, 494]}, {"id": "girl.6", "bbox": [874, 416, 913, 538]}, {"id": "girl.7", "bbox": [821, 396, 879, 513]}, {"id": "hat.8", "bbox": [571, 253, 612, 292]}, {"id": "man.9", "bbox": [524, 208, 760, 582]}, {"id": "person.10", "bbox": [438, 416, 487, 498]}, {"id": "shirt.11", "bbox": [615, 246, 739, 365]}, {"id": "sidewalk.12", "bbox": [0, 421, 1024, 642]}, {"id": "sneaker.13", "bbox": [632, 479, 738, 528]}, {"id": "person.14", "bbox": [562, 192, 755, 547]}, {"id": "man.15", "bbox": [556, 178, 716, 440]}, {"id": "fence.16", "bbox": [0, 368, 1022, 425]}, {"id": "person.17", "bbox": [433, 410, 462, 510]}, {"id": "bench.18", "bbox": [304, 457, 529, 512]}, {"id": "bench.19", "bbox": [56, 471, 201, 538]}]
[{"subject": "person.14", "predicate": "on", "object": "bench.3"}, {"subject": "girl.6", "predicate": "on", "object": "coat.4"}, {"subject": "man.15", "predicate": "wearing", "object": "hat.8"}, {"subject": "man.9", "predicate": "wearing", "object": "sneaker.13"}, {"subject": "man.9", "predicate": "wearing", "object": "shirt.11"}, {"subject": "person.17", "predicate": "sitting on", "object": "bench.18"}, {"subject": "person.10", "predicate": "sitting on", "object": "bench.18"}, {"subject": "bench.19", "predicate": "on", "object": "sidewalk.12"}, {"subject": "bench.1", "predicate": "on", "object": "sidewalk.12"}, {"subject": "bench.2", "predicate": "on", "object": "sidewalk.12"}]
713086
Generate a structured scene graph for an image of size (1024 x 680) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 680) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [648, 125, 1024, 231]}, {"id": "banana.2", "bbox": [592, 57, 725, 283]}, {"id": "board.3", "bbox": [157, 0, 1021, 491]}, {"id": "bottle.4", "bbox": [250, 334, 364, 492]}, {"id": "building.5", "bbox": [0, 0, 1024, 492]}, {"id": "car.6", "bbox": [127, 251, 735, 678]}, {"id": "door.7", "bbox": [489, 534, 662, 678]}, {"id": "ear.8", "bbox": [766, 285, 836, 383]}, {"id": "face.9", "bbox": [618, 216, 781, 456]}, {"id": "hair.10", "bbox": [704, 203, 874, 364]}, {"id": "hand.11", "bbox": [648, 125, 801, 228]}, {"id": "head.12", "bbox": [644, 202, 872, 445]}, {"id": "man.13", "bbox": [554, 62, 1022, 680]}, {"id": "man.14", "bbox": [0, 453, 153, 677]}, {"id": "neck.15", "bbox": [747, 380, 872, 485]}, {"id": "nose.16", "bbox": [629, 307, 684, 372]}, {"id": "shirt.17", "bbox": [622, 289, 1023, 678]}, {"id": "man.18", "bbox": [546, 50, 977, 647]}, {"id": "banana.19", "bbox": [599, 66, 731, 205]}, {"id": "car.20", "bbox": [52, 438, 737, 673]}, {"id": "hair.21", "bbox": [730, 200, 919, 378]}, {"id": "eye.22", "bbox": [669, 284, 765, 349]}, {"id": "face.23", "bbox": [602, 222, 758, 456]}, {"id": "face.24", "bbox": [628, 212, 879, 437]}]
[{"subject": "man.18", "predicate": "with", "object": "banana.19"}, {"subject": "man.13", "predicate": "wears", "object": "shirt.17"}, {"subject": "man.13", "predicate": "has", "object": "hair.21"}, {"subject": "man.13", "predicate": "holding", "object": "banana.2"}, {"subject": "ear.8", "predicate": "on", "object": "head.12"}, {"subject": "nose.16", "predicate": "of", "object": "face.9"}, {"subject": "neck.15", "predicate": "of", "object": "man.13"}, {"subject": "hand.11", "predicate": "on", "object": "man.13"}, {"subject": "man.13", "predicate": "has", "object": "hair.10"}, {"subject": "ear.8", "predicate": "of", "object": "man.13"}, {"subject": "door.7", "predicate": "on", "object": "car.20"}, {"subject": "shirt.17", "predicate": "on", "object": "man.13"}, {"subject": "nose.16", "predicate": "on", "object": "face.24"}]
713087
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "boat.1", "bbox": [0, 297, 1024, 765]}, {"id": "man.2", "bbox": [0, 231, 427, 765]}, {"id": "shirt.3", "bbox": [0, 352, 347, 761]}]
[{"subject": "man.2", "predicate": "wearing", "object": "shirt.3"}]
713088
Generate a structured scene graph for an image of size (632 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (632 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [505, 466, 628, 601]}, {"id": "building.2", "bbox": [127, 0, 308, 793]}, {"id": "building.3", "bbox": [0, 0, 154, 703]}, {"id": "building.4", "bbox": [309, 0, 511, 607]}, {"id": "window.5", "bbox": [49, 327, 83, 379]}, {"id": "window.6", "bbox": [89, 429, 132, 475]}, {"id": "window.7", "bbox": [204, 244, 230, 299]}, {"id": "building.8", "bbox": [295, 31, 413, 609]}, {"id": "building.9", "bbox": [400, 166, 473, 616]}]
[{"subject": "building.2", "predicate": "has", "object": "window.7"}, {"subject": "building.3", "predicate": "has", "object": "window.6"}]
713089
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "girl.1", "bbox": [191, 129, 897, 762]}, {"id": "hair.2", "bbox": [274, 129, 973, 765]}, {"id": "man.3", "bbox": [301, 451, 333, 520]}, {"id": "man.4", "bbox": [854, 437, 936, 519]}, {"id": "umbrella.5", "bbox": [97, 48, 1009, 391]}, {"id": "woman.6", "bbox": [262, 465, 314, 575]}, {"id": "mouth.7", "bbox": [536, 462, 679, 516]}, {"id": "person.8", "bbox": [852, 435, 932, 513]}]
[{"subject": "girl.1", "predicate": "has", "object": "hair.2"}]
713090
Generate a structured scene graph for an image of size (1024 x 714) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 714) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [891, 549, 1000, 653]}, {"id": "hair.2", "bbox": [578, 142, 641, 206]}, {"id": "letter.3", "bbox": [816, 446, 893, 506]}, {"id": "man.4", "bbox": [472, 149, 672, 667]}, {"id": "shirt.5", "bbox": [543, 205, 667, 380]}, {"id": "sign.6", "bbox": [767, 413, 934, 535]}]
[{"subject": "letter.3", "predicate": "on", "object": "sign.6"}]
713091
Generate a structured scene graph for an image of size (680 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (680 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "boot.1", "bbox": [469, 895, 522, 975]}, {"id": "coat.2", "bbox": [244, 450, 418, 719]}, {"id": "fence.3", "bbox": [507, 450, 678, 735]}, {"id": "fence.4", "bbox": [0, 432, 678, 736]}, {"id": "girl.5", "bbox": [225, 370, 436, 978]}, {"id": "hat.6", "bbox": [361, 238, 448, 321]}, {"id": "jean.7", "bbox": [396, 621, 522, 900]}, {"id": "woman.8", "bbox": [363, 235, 563, 972]}, {"id": "leaf.9", "bbox": [91, 44, 209, 172]}, {"id": "pant.10", "bbox": [272, 692, 410, 948]}, {"id": "rock.11", "bbox": [0, 679, 679, 818]}, {"id": "tree.12", "bbox": [0, 7, 558, 860]}, {"id": "umbrella.13", "bbox": [309, 45, 667, 410]}, {"id": "people.14", "bbox": [247, 254, 564, 972]}, {"id": "umbrella.15", "bbox": [323, 45, 658, 279]}, {"id": "tree.16", "bbox": [2, 44, 260, 868]}]
[{"subject": "woman.8", "predicate": "holding", "object": "umbrella.15"}, {"subject": "leaf.9", "predicate": "growing on", "object": "tree.12"}, {"subject": "woman.8", "predicate": "wearing", "object": "hat.6"}, {"subject": "girl.5", "predicate": "wearing", "object": "coat.2"}]
713092
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [0, 149, 117, 518]}, {"id": "bus.2", "bbox": [37, 335, 722, 628]}, {"id": "bus.3", "bbox": [863, 351, 1022, 690]}, {"id": "car.4", "bbox": [695, 350, 877, 513]}, {"id": "door.5", "bbox": [530, 622, 595, 765]}, {"id": "fence.6", "bbox": [0, 534, 1024, 766]}, {"id": "logo.7", "bbox": [3, 243, 64, 302]}, {"id": "man.8", "bbox": [552, 416, 588, 515]}, {"id": "roof.9", "bbox": [505, 534, 897, 603]}, {"id": "roof.10", "bbox": [0, 149, 117, 186]}, {"id": "tire.11", "bbox": [368, 523, 641, 612]}, {"id": "window.12", "bbox": [338, 483, 371, 539]}, {"id": "window.13", "bbox": [590, 356, 647, 406]}, {"id": "window.14", "bbox": [645, 354, 692, 401]}, {"id": "window.15", "bbox": [476, 467, 539, 523]}, {"id": "window.16", "bbox": [535, 357, 595, 408]}, {"id": "bus.17", "bbox": [76, 256, 867, 607]}, {"id": "bus.18", "bbox": [2, 305, 152, 621]}]
[{"subject": "logo.7", "predicate": "mounted on", "object": "building.1"}, {"subject": "window.16", "predicate": "on", "object": "bus.17"}, {"subject": "window.13", "predicate": "on", "object": "bus.17"}, {"subject": "window.14", "predicate": "on", "object": "bus.17"}, {"subject": "bus.17", "predicate": "on", "object": "window.12"}, {"subject": "window.15", "predicate": "on", "object": "bus.17"}]
713093
Generate a structured scene graph for an image of size (1024 x 679) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 679) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "car.1", "bbox": [244, 181, 291, 211]}, {"id": "sign.2", "bbox": [757, 26, 853, 164]}, {"id": "sign.3", "bbox": [757, 25, 853, 71]}, {"id": "tire.4", "bbox": [158, 354, 233, 450]}, {"id": "tire.5", "bbox": [489, 396, 616, 545]}, {"id": "truck.6", "bbox": [94, 157, 887, 543]}, {"id": "tree.7", "bbox": [392, 93, 764, 191]}, {"id": "tree.8", "bbox": [852, 35, 1023, 526]}, {"id": "tree.9", "bbox": [750, 91, 833, 193]}, {"id": "truck.10", "bbox": [695, 163, 861, 224]}, {"id": "truck.11", "bbox": [600, 191, 957, 354]}, {"id": "windshield.12", "bbox": [444, 184, 654, 264]}, {"id": "car.13", "bbox": [243, 167, 282, 228]}]
[{"subject": "tire.4", "predicate": "on", "object": "truck.6"}, {"subject": "tire.5", "predicate": "on", "object": "truck.6"}, {"subject": "tree.8", "predicate": "near", "object": "truck.6"}, {"subject": "truck.10", "predicate": "behind", "object": "tree.9"}]
713094
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "boot.1", "bbox": [526, 487, 657, 563]}, {"id": "child.2", "bbox": [199, 136, 286, 265]}, {"id": "child.3", "bbox": [491, 176, 679, 613]}, {"id": "coat.4", "bbox": [209, 152, 279, 213]}, {"id": "coat.5", "bbox": [542, 266, 656, 427]}, {"id": "helmet.6", "bbox": [551, 218, 634, 282]}, {"id": "ski.7", "bbox": [434, 522, 716, 572]}, {"id": "snow.8", "bbox": [0, 34, 1024, 765]}, {"id": "skier.9", "bbox": [186, 129, 320, 307]}]
[{"subject": "coat.5", "predicate": "on", "object": "child.3"}, {"subject": "helmet.6", "predicate": "on", "object": "child.3"}, {"subject": "child.2", "predicate": "in", "object": "coat.4"}, {"subject": "ski.7", "predicate": "under", "object": "boot.1"}]
713095
Generate a structured scene graph for an image of size (632 x 948) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (632 x 948) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [0, 264, 631, 858]}, {"id": "hat.2", "bbox": [280, 172, 362, 216]}, {"id": "man.3", "bbox": [160, 122, 517, 675]}, {"id": "shirt.4", "bbox": [158, 168, 402, 474]}, {"id": "shoe.5", "bbox": [365, 592, 438, 640]}, {"id": "skateboard.6", "bbox": [219, 612, 459, 695]}, {"id": "man.7", "bbox": [117, 64, 510, 636]}]
[{"subject": "man.7", "predicate": "wearing", "object": "hat.2"}, {"subject": "man.7", "predicate": "wearing", "object": "shirt.4"}, {"subject": "man.3", "predicate": "wearing", "object": "shoe.5"}, {"subject": "man.3", "predicate": "on", "object": "skateboard.6"}]
713098
Generate a structured scene graph for an image of size (1024 x 513) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 513) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "airplane.1", "bbox": [0, 198, 394, 347]}, {"id": "building.2", "bbox": [463, 165, 533, 296]}, {"id": "building.3", "bbox": [122, 204, 173, 270]}, {"id": "letter.4", "bbox": [676, 174, 851, 324]}, {"id": "letter.5", "bbox": [884, 177, 946, 248]}, {"id": "letter.6", "bbox": [773, 217, 815, 264]}, {"id": "letter.7", "bbox": [940, 176, 1001, 247]}, {"id": "plane.8", "bbox": [665, 25, 1023, 387]}, {"id": "tail.9", "bbox": [791, 30, 1019, 292]}, {"id": "truck.10", "bbox": [72, 348, 165, 386]}, {"id": "truck.11", "bbox": [243, 330, 507, 445]}, {"id": "airplane.12", "bbox": [27, 183, 471, 490]}, {"id": "airplane.13", "bbox": [688, 69, 944, 366]}, {"id": "wing.14", "bbox": [787, 7, 1021, 267]}, {"id": "airplane.15", "bbox": [663, 111, 882, 353]}, {"id": "plane.16", "bbox": [1, 193, 369, 327]}, {"id": "tail.17", "bbox": [666, 118, 893, 303]}, {"id": "plane.18", "bbox": [556, 112, 1016, 486]}, {"id": "plane.19", "bbox": [601, 98, 939, 451]}, {"id": "letter.20", "bbox": [732, 183, 823, 255]}, {"id": "plane.21", "bbox": [763, 26, 990, 364]}, {"id": "letter.22", "bbox": [727, 224, 760, 272]}]
[{"subject": "letter.4", "predicate": "on", "object": "airplane.13"}, {"subject": "letter.7", "predicate": "on", "object": "wing.14"}, {"subject": "letter.6", "predicate": "on", "object": "airplane.15"}, {"subject": "tail.9", "predicate": "of", "object": "plane.8"}, {"subject": "tail.17", "predicate": "on", "object": "plane.18"}, {"subject": "letter.4", "predicate": "on", "object": "plane.18"}, {"subject": "letter.5", "predicate": "on", "object": "plane.8"}, {"subject": "letter.4", "predicate": "on", "object": "plane.19"}, {"subject": "letter.20", "predicate": "on", "object": "plane.19"}, {"subject": "tail.9", "predicate": "attached to", "object": "plane.21"}, {"subject": "tail.17", "predicate": "attached to", "object": "plane.8"}, {"subject": "letter.22", "predicate": "on", "object": "tail.17"}, {"subject": "plane.8", "predicate": "has", "object": "tail.17"}, {"subject": "letter.6", "predicate": "on", "object": "tail.17"}, {"subject": "letter.6", "predicate": "on", "object": "plane.8"}]
713099
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "sign.1", "bbox": [738, 287, 881, 376]}, {"id": "engine.2", "bbox": [254, 349, 312, 406]}, {"id": "mountain.3", "bbox": [0, 259, 1024, 306]}, {"id": "person.4", "bbox": [909, 487, 944, 548]}, {"id": "plane.5", "bbox": [0, 193, 690, 534]}, {"id": "truck.6", "bbox": [568, 417, 774, 538]}, {"id": "truck.7", "bbox": [114, 371, 356, 582]}, {"id": "wing.8", "bbox": [0, 316, 384, 373]}, {"id": "tail.9", "bbox": [248, 222, 341, 352]}, {"id": "plane.10", "bbox": [2, 140, 698, 512]}, {"id": "plane.11", "bbox": [203, 133, 601, 523]}, {"id": "wing.12", "bbox": [17, 300, 469, 406]}, {"id": "vehicle.13", "bbox": [556, 384, 801, 562]}, {"id": "vehicle.14", "bbox": [586, 390, 841, 626]}, {"id": "vehicle.15", "bbox": [96, 346, 373, 619]}]
[{"subject": "tail.9", "predicate": "of", "object": "plane.10"}, {"subject": "plane.5", "predicate": "has", "object": "wing.12"}, {"subject": "engine.2", "predicate": "under", "object": "wing.8"}, {"subject": "engine.2", "predicate": "on", "object": "plane.5"}]
713100
Generate a structured scene graph for an image of size (1024 x 410) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 410) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [0, 0, 277, 372]}, {"id": "flag.2", "bbox": [226, 168, 253, 203]}, {"id": "vehicle.3", "bbox": [244, 330, 304, 378]}, {"id": "window.4", "bbox": [579, 185, 621, 211]}, {"id": "building.5", "bbox": [5, 129, 386, 406]}, {"id": "building.6", "bbox": [0, 106, 441, 314]}, {"id": "window.7", "bbox": [582, 178, 624, 224]}, {"id": "building.8", "bbox": [419, 4, 694, 331]}, {"id": "building.9", "bbox": [577, 103, 696, 274]}, {"id": "window.10", "bbox": [731, 171, 749, 243]}, {"id": "building.11", "bbox": [652, 231, 808, 268]}, {"id": "building.12", "bbox": [421, 1, 674, 336]}, {"id": "window.13", "bbox": [682, 196, 728, 244]}, {"id": "building.14", "bbox": [673, 0, 821, 264]}, {"id": "window.15", "bbox": [867, 115, 920, 204]}, {"id": "building.16", "bbox": [817, 0, 1018, 260]}, {"id": "window.17", "bbox": [712, 182, 756, 239]}, {"id": "window.18", "bbox": [580, 41, 620, 78]}, {"id": "window.19", "bbox": [584, 81, 621, 123]}, {"id": "window.20", "bbox": [594, 221, 627, 267]}]
[{"subject": "window.7", "predicate": "on", "object": "building.8"}, {"subject": "window.10", "predicate": "on", "object": "building.11"}, {"subject": "flag.2", "predicate": "on", "object": "building.1"}, {"subject": "window.13", "predicate": "on", "object": "building.14"}, {"subject": "window.15", "predicate": "on", "object": "building.16"}, {"subject": "window.4", "predicate": "on", "object": "building.12"}, {"subject": "window.17", "predicate": "on", "object": "building.14"}, {"subject": "window.18", "predicate": "on", "object": "building.12"}, {"subject": "window.19", "predicate": "on", "object": "building.12"}, {"subject": "window.20", "predicate": "on", "object": "building.8"}]
713101
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [0, 0, 1024, 292]}, {"id": "car.2", "bbox": [11, 252, 1022, 617]}, {"id": "door.3", "bbox": [467, 278, 758, 537]}, {"id": "door.4", "bbox": [278, 279, 500, 538]}, {"id": "paper.5", "bbox": [346, 594, 444, 638]}, {"id": "pole.6", "bbox": [972, 338, 999, 640]}, {"id": "sidewalk.7", "bbox": [4, 587, 1022, 765]}, {"id": "sign.8", "bbox": [395, 58, 694, 106]}, {"id": "sign.9", "bbox": [42, 87, 346, 134]}, {"id": "street.10", "bbox": [0, 318, 1022, 616]}, {"id": "tire.11", "bbox": [817, 465, 960, 591]}, {"id": "window.12", "bbox": [482, 287, 703, 397]}, {"id": "window.13", "bbox": [869, 43, 904, 135]}, {"id": "window.14", "bbox": [296, 286, 469, 392]}]
[{"subject": "car.2", "predicate": "has", "object": "window.12"}, {"subject": "car.2", "predicate": "has", "object": "window.14"}, {"subject": "window.12", "predicate": "on", "object": "car.2"}, {"subject": "window.14", "predicate": "on", "object": "car.2"}, {"subject": "window.13", "predicate": "on", "object": "building.1"}, {"subject": "car.2", "predicate": "has", "object": "door.3"}, {"subject": "car.2", "predicate": "has", "object": "door.4"}, {"subject": "tire.11", "predicate": "on", "object": "car.2"}, {"subject": "building.1", "predicate": "has", "object": "window.13"}, {"subject": "car.2", "predicate": "near", "object": "sidewalk.7"}, {"subject": "sidewalk.7", "predicate": "near", "object": "street.10"}, {"subject": "paper.5", "predicate": "near", "object": "car.2"}, {"subject": "car.2", "predicate": "has", "object": "tire.11"}]
713102
Generate a structured scene graph for an image of size (1024 x 859) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 859) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bench.1", "bbox": [902, 626, 981, 661]}, {"id": "building.2", "bbox": [0, 66, 1024, 667]}, {"id": "clock.3", "bbox": [355, 101, 417, 169]}, {"id": "man.4", "bbox": [93, 384, 249, 715]}, {"id": "people.5", "bbox": [366, 550, 422, 609]}, {"id": "person.6", "bbox": [485, 568, 735, 677]}, {"id": "person.7", "bbox": [922, 596, 973, 664]}, {"id": "window.8", "bbox": [233, 476, 286, 564]}, {"id": "window.9", "bbox": [691, 481, 745, 581]}, {"id": "window.10", "bbox": [694, 329, 755, 447]}, {"id": "window.11", "bbox": [801, 490, 840, 570]}, {"id": "window.12", "bbox": [449, 316, 544, 424]}, {"id": "window.13", "bbox": [588, 351, 634, 436]}, {"id": "window.14", "bbox": [896, 350, 943, 431]}, {"id": "window.15", "bbox": [482, 468, 543, 574]}, {"id": "window.16", "bbox": [582, 351, 621, 447]}, {"id": "building.17", "bbox": [669, 361, 827, 651]}, {"id": "person.18", "bbox": [360, 538, 430, 597]}, {"id": "building.19", "bbox": [325, 253, 617, 709]}]
[{"subject": "window.10", "predicate": "attached to", "object": "building.2"}, {"subject": "window.11", "predicate": "on", "object": "building.2"}, {"subject": "window.9", "predicate": "on", "object": "building.17"}, {"subject": "window.16", "predicate": "on", "object": "building.2"}, {"subject": "window.12", "predicate": "on", "object": "building.2"}, {"subject": "clock.3", "predicate": "above", "object": "building.2"}, {"subject": "person.7", "predicate": "sitting on", "object": "bench.1"}, {"subject": "window.12", "predicate": "on", "object": "building.19"}, {"subject": "window.13", "predicate": "attached to", "object": "building.2"}, {"subject": "window.14", "predicate": "attached to", "object": "building.2"}, {"subject": "window.8", "predicate": "attached to", "object": "building.2"}, {"subject": "window.15", "predicate": "attached to", "object": "building.2"}, {"subject": "window.9", "predicate": "attached to", "object": "building.2"}]
713103
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "book.1", "bbox": [550, 185, 626, 212]}, {"id": "chair.2", "bbox": [778, 244, 825, 305]}, {"id": "chair.3", "bbox": [420, 413, 650, 743]}, {"id": "cup.4", "bbox": [606, 322, 644, 404]}, {"id": "handle.5", "bbox": [478, 202, 576, 434]}, {"id": "lamp.6", "bbox": [627, 104, 654, 210]}, {"id": "paper.7", "bbox": [471, 311, 608, 407]}, {"id": "paper.8", "bbox": [634, 366, 695, 400]}, {"id": "room.9", "bbox": [0, 0, 1021, 764]}, {"id": "table.10", "bbox": [298, 281, 854, 635]}, {"id": "table.11", "bbox": [861, 308, 919, 373]}, {"id": "tile.12", "bbox": [819, 404, 914, 447]}, {"id": "tile.13", "bbox": [861, 462, 974, 529]}, {"id": "tile.14", "bbox": [686, 546, 818, 616]}, {"id": "tile.15", "bbox": [285, 506, 416, 584]}, {"id": "shelf.16", "bbox": [536, 176, 643, 254]}, {"id": "chair.17", "bbox": [399, 363, 620, 535]}, {"id": "table.18", "bbox": [287, 228, 862, 438]}, {"id": "chair.19", "bbox": [762, 248, 860, 311]}]
[{"subject": "book.1", "predicate": "on", "object": "shelf.16"}, {"subject": "paper.8", "predicate": "on", "object": "table.10"}, {"subject": "chair.19", "predicate": "near", "object": "table.10"}, {"subject": "cup.4", "predicate": "above", "object": "table.10"}, {"subject": "lamp.6", "predicate": "standing on", "object": "room.9"}, {"subject": "chair.3", "predicate": "standing on", "object": "room.9"}, {"subject": "chair.2", "predicate": "under", "object": "table.10"}, {"subject": "chair.3", "predicate": "under", "object": "table.10"}]
713104
Generate a structured scene graph for an image of size (768 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (768 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bench.1", "bbox": [10, 730, 762, 1020]}, {"id": "drawer.2", "bbox": [63, 918, 293, 983]}, {"id": "drawer.3", "bbox": [329, 912, 739, 977]}, {"id": "handle.4", "bbox": [258, 486, 297, 579]}, {"id": "handle.5", "bbox": [361, 508, 395, 579]}, {"id": "handle.6", "bbox": [477, 189, 504, 298]}, {"id": "handle.7", "bbox": [508, 226, 549, 280]}, {"id": "logo.8", "bbox": [160, 943, 264, 963]}, {"id": "bench.9", "bbox": [2, 725, 764, 870]}]
[{"subject": "logo.8", "predicate": "on", "object": "bench.1"}, {"subject": "logo.8", "predicate": "on", "object": "drawer.2"}, {"subject": "drawer.2", "predicate": "of", "object": "bench.1"}, {"subject": "drawer.3", "predicate": "of", "object": "bench.1"}]
713105
Generate a structured scene graph for an image of size (682 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (682 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "glove.1", "bbox": [259, 441, 299, 488]}, {"id": "snow.2", "bbox": [2, 794, 677, 1019]}, {"id": "jacket.3", "bbox": [263, 229, 549, 457]}, {"id": "logo.4", "bbox": [306, 375, 395, 424]}, {"id": "mountain.5", "bbox": [0, 601, 647, 698]}, {"id": "pant.6", "bbox": [199, 412, 401, 544]}, {"id": "railing.7", "bbox": [332, 747, 631, 838]}, {"id": "sign.8", "bbox": [384, 756, 583, 813]}, {"id": "snow.9", "bbox": [43, 806, 659, 1022]}, {"id": "snow.10", "bbox": [0, 589, 681, 675]}, {"id": "snow.11", "bbox": [0, 752, 680, 1016]}, {"id": "man.12", "bbox": [198, 223, 562, 554]}, {"id": "track.13", "bbox": [38, 900, 377, 1022]}, {"id": "tree.14", "bbox": [570, 689, 600, 765]}, {"id": "person.15", "bbox": [250, 232, 521, 436]}]
[{"subject": "snow.9", "predicate": "on", "object": "snow.2"}, {"subject": "person.15", "predicate": "wears", "object": "jacket.3"}, {"subject": "snow.9", "predicate": "has", "object": "track.13"}, {"subject": "man.12", "predicate": "has", "object": "pant.6"}, {"subject": "railing.7", "predicate": "in", "object": "snow.9"}]
713107
Generate a structured scene graph for an image of size (768 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (768 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [55, 390, 361, 579]}, {"id": "cabinet.2", "bbox": [316, 0, 491, 76]}, {"id": "counter.3", "bbox": [264, 201, 765, 371]}, {"id": "ear.4", "bbox": [116, 254, 190, 320]}, {"id": "finger.5", "bbox": [248, 650, 357, 718]}, {"id": "girl.6", "bbox": [359, 386, 615, 1019]}, {"id": "hair.7", "bbox": [289, 388, 612, 774]}, {"id": "head.8", "bbox": [377, 398, 567, 595]}, {"id": "woman.9", "bbox": [0, 0, 427, 888]}, {"id": "girl.10", "bbox": [290, 396, 713, 928]}]
[{"subject": "ear.4", "predicate": "on", "object": "woman.9"}, {"subject": "head.8", "predicate": "on", "object": "girl.6"}]
713108
Generate a structured scene graph for an image of size (1024 x 685) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 685) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [338, 180, 980, 379]}, {"id": "door.2", "bbox": [545, 371, 613, 432]}, {"id": "light.3", "bbox": [940, 455, 1001, 657]}, {"id": "train.4", "bbox": [523, 328, 642, 506]}, {"id": "tree.5", "bbox": [682, 306, 935, 544]}, {"id": "window.6", "bbox": [15, 181, 110, 370]}, {"id": "window.7", "bbox": [5, 159, 27, 302]}, {"id": "building.8", "bbox": [0, 135, 175, 598]}, {"id": "window.9", "bbox": [7, 426, 31, 491]}, {"id": "window.10", "bbox": [29, 295, 49, 378]}, {"id": "window.11", "bbox": [7, 491, 33, 582]}, {"id": "window.12", "bbox": [46, 488, 70, 582]}, {"id": "track.13", "bbox": [446, 389, 812, 671]}, {"id": "window.14", "bbox": [536, 355, 627, 418]}, {"id": "pole.15", "bbox": [950, 472, 1018, 639]}, {"id": "train.16", "bbox": [546, 343, 620, 475]}, {"id": "building.17", "bbox": [575, 270, 619, 350]}, {"id": "track.18", "bbox": [535, 432, 837, 676]}, {"id": "track.19", "bbox": [4, 513, 296, 676]}, {"id": "track.20", "bbox": [531, 428, 894, 679]}, {"id": "pole.21", "bbox": [972, 478, 992, 679]}, {"id": "building.22", "bbox": [322, 226, 409, 333]}, {"id": "building.23", "bbox": [405, 282, 479, 335]}, {"id": "building.24", "bbox": [444, 303, 488, 355]}, {"id": "building.25", "bbox": [487, 276, 527, 333]}, {"id": "building.26", "bbox": [525, 204, 580, 334]}, {"id": "building.27", "bbox": [577, 258, 604, 362]}, {"id": "building.28", "bbox": [646, 265, 699, 354]}, {"id": "building.29", "bbox": [671, 236, 702, 308]}, {"id": "building.30", "bbox": [765, 195, 798, 351]}, {"id": "train.31", "bbox": [520, 351, 646, 463]}]
[{"subject": "window.7", "predicate": "on", "object": "building.8"}, {"subject": "window.9", "predicate": "on", "object": "building.8"}, {"subject": "window.6", "predicate": "on", "object": "building.8"}, {"subject": "window.10", "predicate": "on", "object": "building.8"}, {"subject": "window.11", "predicate": "on", "object": "building.8"}, {"subject": "window.12", "predicate": "on", "object": "building.8"}, {"subject": "door.2", "predicate": "with", "object": "window.14"}, {"subject": "light.3", "predicate": "on", "object": "pole.15"}, {"subject": "window.14", "predicate": "on", "object": "train.16"}, {"subject": "train.4", "predicate": "on", "object": "track.13"}, {"subject": "train.4", "predicate": "on", "object": "track.20"}, {"subject": "train.4", "predicate": "on", "object": "track.18"}]
713109
Generate a structured scene graph for an image of size (720 x 540) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (720 x 540) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "chair.1", "bbox": [622, 342, 715, 467]}, {"id": "chair.2", "bbox": [126, 137, 206, 402]}, {"id": "woman.3", "bbox": [198, 74, 574, 504]}, {"id": "glass.4", "bbox": [102, 416, 206, 536]}, {"id": "hair.5", "bbox": [295, 60, 538, 396]}, {"id": "hand.6", "bbox": [276, 241, 364, 330]}, {"id": "nose.7", "bbox": [393, 162, 433, 215]}, {"id": "pizza.8", "bbox": [325, 449, 523, 535]}, {"id": "plate.9", "bbox": [279, 454, 520, 532]}, {"id": "shirt.10", "bbox": [286, 215, 558, 435]}, {"id": "window.11", "bbox": [112, 0, 291, 120]}, {"id": "window.12", "bbox": [0, 0, 217, 421]}, {"id": "chair.13", "bbox": [118, 63, 191, 191]}, {"id": "chair.14", "bbox": [123, 135, 188, 210]}, {"id": "pizza.15", "bbox": [318, 224, 433, 279]}, {"id": "table.16", "bbox": [535, 250, 696, 438]}, {"id": "window.17", "bbox": [0, 109, 107, 518]}, {"id": "window.18", "bbox": [113, 121, 281, 435]}, {"id": "window.19", "bbox": [0, 0, 103, 64]}, {"id": "table.20", "bbox": [101, 412, 716, 534]}, {"id": "head.21", "bbox": [376, 77, 517, 279]}]
[{"subject": "woman.3", "predicate": "eating", "object": "pizza.15"}, {"subject": "nose.7", "predicate": "belonging to", "object": "woman.3"}, {"subject": "pizza.8", "predicate": "on", "object": "plate.9"}, {"subject": "hair.5", "predicate": "on", "object": "woman.3"}, {"subject": "woman.3", "predicate": "has", "object": "head.21"}, {"subject": "hand.6", "predicate": "of", "object": "woman.3"}, {"subject": "woman.3", "predicate": "has", "object": "hair.5"}, {"subject": "woman.3", "predicate": "wearing", "object": "shirt.10"}]
713110
Generate a structured scene graph for an image of size (683 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (683 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [173, 346, 346, 469]}, {"id": "fence.2", "bbox": [0, 271, 683, 495]}, {"id": "glove.3", "bbox": [122, 321, 189, 375]}, {"id": "hair.4", "bbox": [89, 12, 140, 47]}, {"id": "helmet.5", "bbox": [251, 260, 331, 354]}, {"id": "man.6", "bbox": [54, 243, 468, 977]}, {"id": "man.7", "bbox": [386, 18, 477, 115]}, {"id": "man.8", "bbox": [51, 12, 189, 132]}, {"id": "pant.9", "bbox": [98, 479, 320, 767]}, {"id": "plate.10", "bbox": [207, 959, 401, 980]}, {"id": "player.11", "bbox": [366, 192, 568, 477]}, {"id": "player.12", "bbox": [36, 214, 148, 494]}, {"id": "player.13", "bbox": [502, 191, 682, 464]}, {"id": "player.14", "bbox": [122, 205, 259, 492]}, {"id": "player.15", "bbox": [300, 202, 428, 476]}, {"id": "shirt.16", "bbox": [51, 55, 183, 130]}, {"id": "shirt.17", "bbox": [388, 62, 478, 113]}, {"id": "shirt.18", "bbox": [120, 271, 363, 552]}, {"id": "sock.19", "bbox": [101, 737, 154, 892]}, {"id": "woman.20", "bbox": [321, 17, 406, 118]}, {"id": "player.21", "bbox": [436, 190, 580, 463]}, {"id": "shoe.22", "bbox": [80, 879, 144, 947]}, {"id": "man.23", "bbox": [92, 247, 376, 756]}]
[{"subject": "man.7", "predicate": "wearing", "object": "shirt.17"}, {"subject": "man.8", "predicate": "wearing", "object": "shirt.16"}, {"subject": "man.8", "predicate": "has", "object": "hair.4"}, {"subject": "man.23", "predicate": "wearing", "object": "shirt.18"}, {"subject": "man.6", "predicate": "wearing", "object": "shirt.18"}, {"subject": "man.6", "predicate": "wearing", "object": "helmet.5"}]
713111
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "beach.1", "bbox": [0, 361, 1024, 683]}, {"id": "hat.2", "bbox": [825, 272, 887, 343]}, {"id": "cap.3", "bbox": [254, 76, 301, 106]}, {"id": "head.4", "bbox": [243, 69, 307, 137]}, {"id": "head.5", "bbox": [814, 270, 897, 342]}, {"id": "leg.6", "bbox": [744, 453, 845, 630]}, {"id": "leg.7", "bbox": [243, 263, 300, 431]}, {"id": "leg.8", "bbox": [630, 443, 706, 604]}, {"id": "leg.9", "bbox": [174, 264, 234, 415]}, {"id": "man.10", "bbox": [163, 64, 331, 448]}, {"id": "man.11", "bbox": [593, 259, 1015, 663]}, {"id": "short.12", "bbox": [663, 391, 834, 567]}, {"id": "short.13", "bbox": [191, 224, 296, 330]}, {"id": "wave.14", "bbox": [693, 216, 1020, 327]}, {"id": "wave.15", "bbox": [684, 105, 1023, 156]}, {"id": "beach.16", "bbox": [9, 9, 1016, 671]}, {"id": "wave.17", "bbox": [687, 229, 1018, 409]}, {"id": "hat.18", "bbox": [229, 56, 310, 119]}, {"id": "hat.19", "bbox": [242, 69, 309, 113]}, {"id": "hat.20", "bbox": [800, 259, 891, 355]}, {"id": "hand.21", "bbox": [906, 505, 948, 549]}]
[{"subject": "man.11", "predicate": "wearing", "object": "hat.2"}, {"subject": "man.10", "predicate": "wearing", "object": "cap.3"}, {"subject": "man.11", "predicate": "wearing", "object": "short.12"}, {"subject": "man.10", "predicate": "wearing", "object": "short.13"}, {"subject": "man.10", "predicate": "on", "object": "beach.16"}, {"subject": "man.11", "predicate": "on", "object": "beach.16"}, {"subject": "man.10", "predicate": "in", "object": "hat.18"}, {"subject": "man.10", "predicate": "wearing", "object": "hat.19"}, {"subject": "man.11", "predicate": "wearing", "object": "hat.20"}, {"subject": "man.10", "predicate": "on", "object": "beach.1"}, {"subject": "man.11", "predicate": "on", "object": "beach.1"}, {"subject": "hat.20", "predicate": "on", "object": "head.5"}, {"subject": "hat.18", "predicate": "on", "object": "head.4"}]
713112
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "jacket.1", "bbox": [713, 380, 979, 736]}, {"id": "board.2", "bbox": [211, 548, 296, 604]}, {"id": "board.3", "bbox": [211, 548, 298, 568]}, {"id": "bottle.4", "bbox": [694, 502, 744, 624]}, {"id": "building.5", "bbox": [487, 0, 1019, 768]}, {"id": "face.6", "bbox": [770, 287, 871, 383]}, {"id": "glass.7", "bbox": [773, 300, 858, 325]}, {"id": "hat.8", "bbox": [766, 259, 876, 323]}, {"id": "person.9", "bbox": [677, 221, 998, 766]}, {"id": "pole.10", "bbox": [60, 298, 98, 616]}, {"id": "sign.11", "bbox": [94, 557, 166, 608]}, {"id": "sign.12", "bbox": [19, 188, 131, 306]}, {"id": "sign.13", "bbox": [292, 222, 410, 262]}, {"id": "tower.14", "bbox": [250, 0, 505, 603]}, {"id": "window.15", "bbox": [588, 302, 634, 499]}, {"id": "window.16", "bbox": [517, 478, 541, 561]}, {"id": "window.17", "bbox": [297, 292, 333, 402]}, {"id": "window.18", "bbox": [428, 72, 493, 175]}, {"id": "window.19", "bbox": [367, 273, 414, 384]}, {"id": "window.20", "bbox": [546, 416, 573, 511]}, {"id": "window.21", "bbox": [432, 272, 498, 375]}, {"id": "window.22", "bbox": [363, 78, 406, 186]}, {"id": "man.23", "bbox": [677, 222, 998, 764]}, {"id": "window.24", "bbox": [286, 98, 339, 210]}]
[{"subject": "man.23", "predicate": "has", "object": "hat.8"}, {"subject": "man.23", "predicate": "has", "object": "glass.7"}, {"subject": "man.23", "predicate": "has", "object": "face.6"}, {"subject": "man.23", "predicate": "with", "object": "bottle.4"}, {"subject": "window.20", "predicate": "on", "object": "building.5"}, {"subject": "building.5", "predicate": "has", "object": "window.15"}, {"subject": "building.5", "predicate": "has", "object": "window.16"}, {"subject": "tower.14", "predicate": "has", "object": "window.22"}, {"subject": "building.5", "predicate": "has", "object": "window.20"}, {"subject": "tower.14", "predicate": "has", "object": "window.21"}, {"subject": "tower.14", "predicate": "has", "object": "window.17"}, {"subject": "tower.14", "predicate": "has", "object": "window.18"}, {"subject": "tower.14", "predicate": "has", "object": "window.24"}, {"subject": "tower.14", "predicate": "has", "object": "window.19"}, {"subject": "sign.12", "predicate": "on", "object": "pole.10"}, {"subject": "man.23", "predicate": "wearing", "object": "jacket.1"}, {"subject": "person.9", "predicate": "holding", "object": "bottle.4"}, {"subject": "person.9", "predicate": "wearing", "object": "jacket.1"}, {"subject": "window.15", "predicate": "on", "object": "building.5"}]
713113
Generate a structured scene graph for an image of size (1024 x 681) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 681) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "finger.1", "bbox": [195, 313, 282, 353]}, {"id": "hand.2", "bbox": [68, 314, 280, 431]}, {"id": "jean.3", "bbox": [874, 418, 1011, 674]}, {"id": "man.4", "bbox": [493, 71, 786, 675]}, {"id": "shirt.5", "bbox": [486, 183, 777, 548]}, {"id": "woman.6", "bbox": [880, 113, 1017, 677]}]
[{"subject": "man.4", "predicate": "wearing", "object": "shirt.5"}, {"subject": "jean.3", "predicate": "on", "object": "woman.6"}, {"subject": "finger.1", "predicate": "on", "object": "hand.2"}]
713114
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bike.1", "bbox": [33, 63, 960, 676]}, {"id": "building.2", "bbox": [16, 25, 334, 250]}, {"id": "letter.3", "bbox": [316, 289, 399, 343]}, {"id": "letter.4", "bbox": [224, 486, 340, 560]}, {"id": "light.5", "bbox": [545, 202, 580, 291]}, {"id": "seat.6", "bbox": [160, 181, 281, 287]}, {"id": "street.7", "bbox": [18, 385, 995, 666]}, {"id": "wheel.8", "bbox": [335, 323, 688, 660]}, {"id": "motorcycle.9", "bbox": [29, 56, 682, 654]}, {"id": "wheel.10", "bbox": [40, 281, 239, 554]}, {"id": "wheel.11", "bbox": [721, 315, 979, 575]}, {"id": "motorcycle.12", "bbox": [405, 66, 963, 579]}, {"id": "wheel.13", "bbox": [342, 357, 671, 654]}, {"id": "bike.14", "bbox": [336, 32, 950, 572]}, {"id": "leaf.15", "bbox": [635, 557, 1012, 670]}, {"id": "tire.16", "bbox": [50, 319, 275, 603]}, {"id": "tire.17", "bbox": [688, 303, 1008, 582]}, {"id": "leaf.18", "bbox": [762, 584, 1007, 677]}, {"id": "light.19", "bbox": [592, 201, 649, 228]}, {"id": "vehicle.20", "bbox": [651, 143, 846, 355]}, {"id": "light.21", "bbox": [861, 215, 909, 313]}, {"id": "vehicle.22", "bbox": [648, 155, 769, 382]}, {"id": "vehicle.23", "bbox": [526, 168, 598, 305]}, {"id": "light.24", "bbox": [839, 216, 907, 351]}, {"id": "vehicle.25", "bbox": [704, 233, 879, 456]}, {"id": "light.26", "bbox": [585, 231, 637, 284]}, {"id": "vehicle.27", "bbox": [425, 359, 501, 485]}, {"id": "vehicle.28", "bbox": [366, 326, 524, 463]}, {"id": "vehicle.29", "bbox": [296, 362, 405, 499]}]
[{"subject": "wheel.8", "predicate": "of", "object": "motorcycle.9"}, {"subject": "wheel.10", "predicate": "of", "object": "motorcycle.9"}, {"subject": "wheel.11", "predicate": "of", "object": "motorcycle.12"}, {"subject": "wheel.8", "predicate": "of", "object": "bike.1"}, {"subject": "wheel.13", "predicate": "of", "object": "motorcycle.9"}, {"subject": "tire.16", "predicate": "of", "object": "bike.1"}, {"subject": "tire.17", "predicate": "of", "object": "bike.14"}, {"subject": "seat.6", "predicate": "of", "object": "bike.1"}, {"subject": "letter.4", "predicate": "painted on", "object": "motorcycle.9"}, {"subject": "letter.3", "predicate": "painted on", "object": "motorcycle.9"}, {"subject": "light.24", "predicate": "on", "object": "vehicle.25"}]
713115
Generate a structured scene graph for an image of size (1024 x 740) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 740) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bowl.1", "bbox": [331, 498, 403, 537]}, {"id": "building.2", "bbox": [0, 0, 1024, 735]}, {"id": "desk.3", "bbox": [0, 494, 1022, 736]}, {"id": "food.4", "bbox": [875, 490, 1020, 544]}, {"id": "laptop.5", "bbox": [639, 176, 956, 606]}, {"id": "letter.6", "bbox": [375, 119, 453, 152]}, {"id": "stand.7", "bbox": [282, 474, 465, 539]}, {"id": "stand.8", "bbox": [812, 432, 984, 634]}, {"id": "window.9", "bbox": [0, 248, 340, 429]}, {"id": "sign.10", "bbox": [351, 66, 481, 200]}]
[{"subject": "laptop.5", "predicate": "on", "object": "stand.8"}, {"subject": "window.9", "predicate": "of", "object": "building.2"}, {"subject": "letter.6", "predicate": "on", "object": "sign.10"}]
713116
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [0, 179, 367, 297]}, {"id": "car.2", "bbox": [0, 255, 668, 402]}, {"id": "engine.3", "bbox": [258, 254, 666, 404]}, {"id": "hill.4", "bbox": [0, 0, 1024, 324]}, {"id": "house.5", "bbox": [0, 186, 106, 301]}, {"id": "house.6", "bbox": [138, 238, 238, 286]}, {"id": "house.7", "bbox": [168, 204, 272, 254]}, {"id": "mountain.8", "bbox": [178, 0, 671, 108]}, {"id": "track.9", "bbox": [650, 393, 1022, 405]}, {"id": "tree.10", "bbox": [45, 132, 186, 266]}, {"id": "tree.11", "bbox": [0, 115, 91, 258]}, {"id": "mountain.12", "bbox": [1, 44, 1015, 461]}, {"id": "train.13", "bbox": [230, 235, 676, 447]}, {"id": "house.14", "bbox": [6, 213, 117, 289]}]
[{"subject": "hill.4", "predicate": "on", "object": "mountain.12"}, {"subject": "car.2", "predicate": "on", "object": "track.9"}, {"subject": "house.5", "predicate": "behind", "object": "tree.11"}]
713117
Generate a structured scene graph for an image of size (959 x 1280) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (959 x 1280) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "building.1", "bbox": [626, 0, 726, 378]}, {"id": "building.2", "bbox": [568, 0, 956, 183]}, {"id": "building.3", "bbox": [81, 0, 306, 398]}, {"id": "car.4", "bbox": [670, 377, 956, 562]}, {"id": "man.5", "bbox": [45, 338, 111, 497]}, {"id": "man.6", "bbox": [188, 342, 245, 486]}, {"id": "people.7", "bbox": [261, 348, 302, 477]}, {"id": "sidewalk.8", "bbox": [0, 385, 957, 1260]}, {"id": "tree.9", "bbox": [0, 0, 271, 493]}, {"id": "tree.10", "bbox": [93, 118, 298, 418]}, {"id": "vehicle.11", "bbox": [632, 318, 931, 588]}, {"id": "street.12", "bbox": [635, 446, 925, 632]}, {"id": "building.13", "bbox": [568, 0, 922, 140]}, {"id": "building.14", "bbox": [203, 13, 331, 183]}, {"id": "building.15", "bbox": [612, 5, 953, 365]}]
[{"subject": "people.7", "predicate": "walking on", "object": "sidewalk.8"}, {"subject": "car.4", "predicate": "on", "object": "street.12"}]
713118
Generate a structured scene graph for an image of size (800 x 600) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (800 x 600) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "laptop.1", "bbox": [574, 382, 795, 491]}, {"id": "woman.2", "bbox": [554, 45, 796, 409]}, {"id": "woman.3", "bbox": [271, 94, 519, 378]}, {"id": "man.4", "bbox": [1, 105, 239, 371]}, {"id": "hair.5", "bbox": [281, 96, 448, 310]}, {"id": "hand.6", "bbox": [703, 350, 790, 416]}, {"id": "jacket.7", "bbox": [0, 164, 240, 374]}, {"id": "laptop.8", "bbox": [557, 492, 800, 598]}, {"id": "shirt.9", "bbox": [539, 159, 796, 401]}, {"id": "table.10", "bbox": [0, 355, 800, 599]}, {"id": "tree.11", "bbox": [0, 0, 800, 198]}, {"id": "tie.12", "bbox": [29, 206, 91, 375]}, {"id": "phone.13", "bbox": [352, 283, 386, 322]}, {"id": "laptop.14", "bbox": [560, 357, 796, 505]}, {"id": "phone.15", "bbox": [469, 403, 538, 463]}, {"id": "phone.16", "bbox": [350, 291, 395, 335]}, {"id": "woman.17", "bbox": [554, 47, 773, 414]}, {"id": "laptop.18", "bbox": [560, 351, 773, 476]}]
[{"subject": "man.4", "predicate": "wearing", "object": "tie.12"}, {"subject": "woman.2", "predicate": "using", "object": "laptop.14"}, {"subject": "hair.5", "predicate": "of", "object": "woman.3"}, {"subject": "woman.2", "predicate": "wearing", "object": "shirt.9"}, {"subject": "laptop.8", "predicate": "on", "object": "table.10"}, {"subject": "man.4", "predicate": "wearing", "object": "jacket.7"}, {"subject": "hand.6", "predicate": "of", "object": "woman.17"}, {"subject": "laptop.18", "predicate": "on", "object": "table.10"}, {"subject": "shirt.9", "predicate": "on", "object": "woman.17"}, {"subject": "tie.12", "predicate": "on", "object": "man.4"}]
713119
Generate a structured scene graph for an image of size (1024 x 680) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 680) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "boot.1", "bbox": [557, 621, 640, 676]}, {"id": "box.2", "bbox": [725, 427, 823, 575]}, {"id": "box.3", "bbox": [536, 423, 731, 543]}, {"id": "woman.4", "bbox": [271, 170, 392, 334]}, {"id": "door.5", "bbox": [787, 159, 979, 480]}, {"id": "jean.6", "bbox": [564, 464, 673, 633]}, {"id": "leaf.7", "bbox": [756, 49, 791, 91]}, {"id": "leaf.8", "bbox": [518, 48, 552, 96]}, {"id": "man.9", "bbox": [330, 176, 477, 320]}, {"id": "people.10", "bbox": [336, 179, 474, 322]}, {"id": "person.11", "bbox": [496, 165, 716, 676]}, {"id": "sidewalk.12", "bbox": [0, 322, 1021, 670]}, {"id": "snow.13", "bbox": [520, 161, 592, 222]}, {"id": "snow.14", "bbox": [28, 8, 413, 73]}, {"id": "snow.15", "bbox": [42, 47, 81, 84]}, {"id": "snow.16", "bbox": [782, 487, 1014, 663]}, {"id": "snow.17", "bbox": [213, 57, 347, 194]}, {"id": "snow.18", "bbox": [88, 258, 175, 351]}, {"id": "tree.19", "bbox": [135, 20, 710, 278]}, {"id": "tree.20", "bbox": [597, 10, 944, 185]}, {"id": "tree.21", "bbox": [425, 0, 567, 177]}, {"id": "truck.22", "bbox": [37, 71, 442, 247]}, {"id": "umbrella.23", "bbox": [171, 386, 377, 609]}, {"id": "umbrella.24", "bbox": [74, 105, 383, 257]}, {"id": "umbrella.25", "bbox": [560, 31, 803, 420]}, {"id": "umbrella.26", "bbox": [228, 273, 576, 438]}, {"id": "umbrella.27", "bbox": [459, 397, 486, 642]}, {"id": "vehicle.28", "bbox": [274, 142, 562, 307]}, {"id": "vehicle.29", "bbox": [0, 115, 88, 274]}, {"id": "wheel.30", "bbox": [466, 617, 526, 676]}, {"id": "wheel.31", "bbox": [745, 566, 803, 628]}, {"id": "wheel.32", "bbox": [282, 629, 351, 676]}, {"id": "window.33", "bbox": [806, 166, 956, 295]}, {"id": "woman.34", "bbox": [157, 214, 313, 637]}, {"id": "woman.35", "bbox": [38, 196, 194, 622]}, {"id": "vehicle.36", "bbox": [865, 169, 945, 448]}, {"id": "person.37", "bbox": [165, 201, 252, 351]}, {"id": "person.38", "bbox": [52, 204, 202, 606]}]
[{"subject": "door.5", "predicate": "on", "object": "vehicle.36"}, {"subject": "leaf.8", "predicate": "on", "object": "tree.19"}]
713120
Generate a structured scene graph for an image of size (1024 x 683) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 683) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bench.1", "bbox": [271, 544, 531, 683]}, {"id": "boy.2", "bbox": [785, 142, 1019, 402]}, {"id": "car.3", "bbox": [0, 0, 373, 176]}, {"id": "girl.4", "bbox": [198, 171, 542, 614]}, {"id": "child.5", "bbox": [199, 137, 1022, 615]}, {"id": "food.6", "bbox": [531, 347, 602, 387]}, {"id": "food.7", "bbox": [848, 388, 924, 446]}, {"id": "hair.8", "bbox": [202, 155, 391, 378]}, {"id": "hair.9", "bbox": [229, 170, 375, 433]}, {"id": "table.10", "bbox": [354, 190, 1017, 678]}, {"id": "plate.11", "bbox": [503, 313, 646, 407]}, {"id": "plate.12", "bbox": [614, 356, 802, 452]}, {"id": "plate.13", "bbox": [608, 278, 724, 352]}, {"id": "plate.14", "bbox": [790, 322, 916, 377]}, {"id": "plate.15", "bbox": [598, 335, 788, 483]}, {"id": "shirt.16", "bbox": [824, 236, 1021, 379]}, {"id": "short.17", "bbox": [360, 467, 451, 588]}, {"id": "table.18", "bbox": [237, 159, 1017, 679]}, {"id": "car.19", "bbox": [0, 3, 387, 189]}, {"id": "girl.20", "bbox": [181, 160, 557, 643]}, {"id": "boy.21", "bbox": [847, 126, 1007, 327]}, {"id": "food.22", "bbox": [877, 372, 934, 412]}]
[{"subject": "plate.11", "predicate": "has", "object": "food.6"}, {"subject": "plate.11", "predicate": "on", "object": "table.10"}, {"subject": "boy.2", "predicate": "wearing", "object": "shirt.16"}, {"subject": "girl.20", "predicate": "with", "object": "hair.9"}, {"subject": "plate.11", "predicate": "in front of", "object": "girl.20"}, {"subject": "girl.20", "predicate": "with", "object": "hair.8"}, {"subject": "girl.20", "predicate": "wearing", "object": "short.17"}, {"subject": "girl.20", "predicate": "sitting on", "object": "bench.1"}, {"subject": "plate.12", "predicate": "on", "object": "table.18"}, {"subject": "plate.15", "predicate": "on", "object": "table.18"}, {"subject": "plate.15", "predicate": "on", "object": "table.10"}]
713121
Generate a structured scene graph for an image of size (679 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (679 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bottle.1", "bbox": [269, 45, 302, 156]}, {"id": "bottle.2", "bbox": [255, 87, 279, 169]}, {"id": "bottle.3", "bbox": [221, 82, 249, 169]}, {"id": "bottle.4", "bbox": [190, 85, 215, 170]}, {"id": "bottle.5", "bbox": [49, 391, 123, 631]}, {"id": "bottle.6", "bbox": [589, 40, 655, 84]}, {"id": "chair.7", "bbox": [250, 232, 378, 425]}, {"id": "table.8", "bbox": [148, 139, 385, 405]}, {"id": "fork.9", "bbox": [460, 818, 642, 925]}, {"id": "fork.10", "bbox": [461, 785, 661, 900]}, {"id": "glass.11", "bbox": [165, 529, 298, 805]}, {"id": "glass.12", "bbox": [494, 472, 591, 681]}, {"id": "glass.13", "bbox": [578, 0, 677, 130]}, {"id": "handle.14", "bbox": [418, 912, 474, 1020]}, {"id": "lamp.15", "bbox": [115, 340, 256, 628]}, {"id": "plate.16", "bbox": [28, 800, 403, 1021]}, {"id": "shelf.17", "bbox": [590, 1, 652, 33]}, {"id": "stand.18", "bbox": [151, 48, 367, 355]}, {"id": "table.19", "bbox": [0, 400, 679, 1019]}, {"id": "table.20", "bbox": [320, 198, 677, 497]}]
[{"subject": "fork.9", "predicate": "near", "object": "fork.10"}, {"subject": "bottle.1", "predicate": "on", "object": "table.8"}, {"subject": "fork.9", "predicate": "on", "object": "table.19"}, {"subject": "fork.10", "predicate": "on", "object": "table.19"}, {"subject": "bottle.2", "predicate": "on", "object": "stand.18"}, {"subject": "bottle.3", "predicate": "on", "object": "stand.18"}, {"subject": "bottle.4", "predicate": "on", "object": "stand.18"}, {"subject": "bottle.2", "predicate": "on", "object": "table.8"}, {"subject": "bottle.3", "predicate": "on", "object": "table.8"}, {"subject": "bottle.4", "predicate": "on", "object": "table.8"}, {"subject": "lamp.15", "predicate": "on", "object": "table.19"}, {"subject": "glass.11", "predicate": "on", "object": "table.19"}, {"subject": "glass.12", "predicate": "on", "object": "table.19"}, {"subject": "bottle.6", "predicate": "behind", "object": "glass.13"}, {"subject": "bottle.5", "predicate": "near", "object": "lamp.15"}, {"subject": "bottle.5", "predicate": "on", "object": "table.19"}]
713122
Generate a structured scene graph for an image of size (1024 x 681) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 681) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "book.1", "bbox": [511, 457, 594, 550]}, {"id": "ear.2", "bbox": [147, 219, 192, 279]}, {"id": "glass.3", "bbox": [395, 123, 475, 171]}, {"id": "hair.4", "bbox": [98, 103, 266, 296]}, {"id": "jacket.5", "bbox": [328, 173, 633, 631]}, {"id": "jacket.6", "bbox": [56, 290, 396, 676]}, {"id": "man.7", "bbox": [54, 21, 750, 676]}, {"id": "man.8", "bbox": [57, 107, 397, 678]}, {"id": "man.9", "bbox": [354, 70, 745, 634]}, {"id": "paper.10", "bbox": [488, 456, 601, 583]}, {"id": "shirt.11", "bbox": [147, 293, 385, 622]}, {"id": "tie.12", "bbox": [248, 344, 397, 632]}, {"id": "hair.13", "bbox": [343, 56, 612, 655]}, {"id": "tie.14", "bbox": [461, 236, 518, 334]}, {"id": "man.15", "bbox": [366, 61, 604, 571]}, {"id": "man.16", "bbox": [76, 310, 349, 663]}, {"id": "hair.17", "bbox": [60, 102, 283, 202]}, {"id": "man.18", "bbox": [346, 59, 485, 193]}]
[{"subject": "man.7", "predicate": "wearing", "object": "glass.3"}, {"subject": "man.7", "predicate": "has", "object": "hair.13"}, {"subject": "man.7", "predicate": "wearing", "object": "tie.14"}, {"subject": "man.7", "predicate": "holding", "object": "paper.10"}, {"subject": "man.7", "predicate": "wearing", "object": "jacket.6"}, {"subject": "man.7", "predicate": "has", "object": "hair.4"}, {"subject": "man.7", "predicate": "wearing", "object": "tie.12"}, {"subject": "man.7", "predicate": "holding", "object": "book.1"}, {"subject": "paper.10", "predicate": "in", "object": "book.1"}, {"subject": "man.9", "predicate": "wearing", "object": "jacket.5"}, {"subject": "man.16", "predicate": "wearing", "object": "jacket.6"}, {"subject": "man.7", "predicate": "with", "object": "hair.17"}, {"subject": "man.18", "predicate": "with", "object": "hair.13"}, {"subject": "man.8", "predicate": "wearing", "object": "jacket.5"}, {"subject": "hair.4", "predicate": "on", "object": "man.7"}, {"subject": "tie.12", "predicate": "over", "object": "shirt.11"}, {"subject": "shirt.11", "predicate": "of", "object": "man.7"}, {"subject": "hair.4", "predicate": "near", "object": "ear.2"}, {"subject": "ear.2", "predicate": "on", "object": "man.7"}]
713123
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "box.1", "bbox": [545, 437, 695, 531]}, {"id": "building.2", "bbox": [0, 0, 821, 612]}, {"id": "counter.3", "bbox": [451, 535, 796, 763]}, {"id": "door.4", "bbox": [75, 128, 382, 538]}, {"id": "eye.5", "bbox": [318, 330, 395, 363]}, {"id": "face.6", "bbox": [221, 251, 456, 544]}, {"id": "hair.7", "bbox": [90, 176, 467, 596]}, {"id": "hat.8", "bbox": [507, 271, 600, 379]}, {"id": "head.9", "bbox": [498, 274, 600, 386]}, {"id": "neck.10", "bbox": [164, 431, 336, 602]}, {"id": "nose.11", "bbox": [372, 361, 426, 440]}, {"id": "shirt.12", "bbox": [60, 505, 532, 766]}, {"id": "stand.13", "bbox": [415, 0, 1023, 259]}, {"id": "window.14", "bbox": [108, 240, 204, 365]}, {"id": "woman.15", "bbox": [59, 142, 534, 765]}, {"id": "woman.16", "bbox": [727, 250, 1023, 766]}, {"id": "woman.17", "bbox": [412, 269, 604, 568]}, {"id": "woman.18", "bbox": [167, 161, 507, 626]}]
[{"subject": "nose.11", "predicate": "on", "object": "face.6"}, {"subject": "eye.5", "predicate": "of", "object": "woman.18"}, {"subject": "hat.8", "predicate": "on", "object": "head.9"}, {"subject": "shirt.12", "predicate": "on", "object": "woman.15"}, {"subject": "woman.15", "predicate": "has", "object": "hair.7"}, {"subject": "woman.17", "predicate": "holding", "object": "box.1"}]
713124
Generate a structured scene graph for an image of size (683 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (683 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "arm.1", "bbox": [406, 161, 658, 304]}, {"id": "building.2", "bbox": [0, 270, 683, 1021]}, {"id": "cap.3", "bbox": [302, 119, 390, 194]}, {"id": "chair.4", "bbox": [0, 411, 179, 748]}, {"id": "hat.5", "bbox": [612, 18, 680, 64]}, {"id": "hat.6", "bbox": [198, 43, 262, 76]}, {"id": "leg.7", "bbox": [89, 681, 349, 942]}, {"id": "leg.8", "bbox": [440, 646, 599, 955]}, {"id": "logo.9", "bbox": [474, 900, 523, 930]}, {"id": "man.10", "bbox": [86, 117, 659, 952]}, {"id": "plant.11", "bbox": [43, 96, 288, 729]}, {"id": "shirt.12", "bbox": [252, 165, 568, 581]}, {"id": "shoe.13", "bbox": [90, 810, 600, 956]}, {"id": "shoe.14", "bbox": [431, 864, 611, 962]}, {"id": "short.15", "bbox": [282, 478, 515, 703]}, {"id": "sock.16", "bbox": [478, 811, 528, 903]}, {"id": "sock.17", "bbox": [143, 775, 222, 857]}, {"id": "towel.18", "bbox": [0, 430, 97, 587]}, {"id": "tree.19", "bbox": [44, 99, 286, 640]}, {"id": "hat.20", "bbox": [249, 84, 444, 327]}, {"id": "building.21", "bbox": [0, 245, 660, 715]}]
[{"subject": "man.10", "predicate": "wearing", "object": "shirt.12"}, {"subject": "man.10", "predicate": "wearing", "object": "sock.16"}, {"subject": "man.10", "predicate": "wearing", "object": "sock.17"}, {"subject": "man.10", "predicate": "wearing", "object": "shoe.13"}, {"subject": "man.10", "predicate": "wearing", "object": "shoe.14"}, {"subject": "man.10", "predicate": "wearing", "object": "short.15"}, {"subject": "man.10", "predicate": "wearing", "object": "hat.20"}, {"subject": "towel.18", "predicate": "on back of", "object": "chair.4"}, {"subject": "logo.9", "predicate": "on", "object": "shoe.14"}, {"subject": "man.10", "predicate": "has", "object": "leg.7"}, {"subject": "man.10", "predicate": "has", "object": "leg.8"}, {"subject": "man.10", "predicate": "wearing", "object": "cap.3"}]
713125
Generate a structured scene graph for an image of size (1024 x 768) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (1024 x 768) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [496, 452, 713, 571]}, {"id": "bench.2", "bbox": [355, 376, 782, 699]}, {"id": "building.3", "bbox": [8, 0, 1004, 248]}, {"id": "building.4", "bbox": [368, 1, 1019, 235]}, {"id": "building.5", "bbox": [0, 2, 306, 294]}, {"id": "person.6", "bbox": [296, 249, 673, 728]}, {"id": "fence.7", "bbox": [3, 215, 1018, 271]}, {"id": "hand.8", "bbox": [521, 357, 566, 406]}, {"id": "handle.9", "bbox": [531, 235, 551, 358]}, {"id": "head.10", "bbox": [531, 257, 616, 350]}, {"id": "jean.11", "bbox": [346, 462, 543, 689]}, {"id": "man.12", "bbox": [356, 244, 672, 733]}, {"id": "people.13", "bbox": [285, 249, 698, 733]}, {"id": "person.14", "bbox": [290, 271, 582, 732]}, {"id": "shirt.15", "bbox": [562, 300, 677, 477]}, {"id": "shoe.16", "bbox": [285, 658, 456, 736]}, {"id": "sidewalk.17", "bbox": [0, 394, 1021, 765]}, {"id": "street.18", "bbox": [0, 478, 1011, 760]}, {"id": "umbrella.19", "bbox": [354, 153, 709, 307]}, {"id": "window.20", "bbox": [368, 11, 1019, 200]}, {"id": "window.21", "bbox": [467, 103, 499, 159]}, {"id": "window.22", "bbox": [407, 164, 439, 216]}, {"id": "window.23", "bbox": [560, 94, 595, 168]}, {"id": "window.24", "bbox": [894, 72, 941, 128]}, {"id": "window.25", "bbox": [515, 83, 559, 174]}, {"id": "window.26", "bbox": [858, 137, 886, 196]}, {"id": "man.27", "bbox": [510, 246, 699, 530]}, {"id": "bottle.28", "bbox": [410, 411, 471, 498]}, {"id": "umbrella.29", "bbox": [379, 172, 695, 402]}, {"id": "building.30", "bbox": [690, 1, 1010, 205]}]
[{"subject": "bag.1", "predicate": "on", "object": "bench.2"}, {"subject": "umbrella.19", "predicate": "has", "object": "handle.9"}, {"subject": "man.12", "predicate": "wears", "object": "shoe.16"}, {"subject": "window.25", "predicate": "in", "object": "building.3"}, {"subject": "building.3", "predicate": "has", "object": "window.25"}, {"subject": "man.27", "predicate": "holding", "object": "umbrella.19"}, {"subject": "people.13", "predicate": "on", "object": "bench.2"}, {"subject": "person.6", "predicate": "sitting on", "object": "bench.2"}, {"subject": "bench.2", "predicate": "on", "object": "street.18"}, {"subject": "umbrella.29", "predicate": "over", "object": "person.6"}, {"subject": "man.27", "predicate": "wears", "object": "shirt.15"}, {"subject": "building.4", "predicate": "has", "object": "window.20"}, {"subject": "building.4", "predicate": "has", "object": "window.25"}, {"subject": "building.4", "predicate": "has", "object": "window.23"}, {"subject": "building.30", "predicate": "has", "object": "window.24"}, {"subject": "building.4", "predicate": "has", "object": "window.26"}, {"subject": "umbrella.19", "predicate": "over", "object": "head.10"}, {"subject": "man.12", "predicate": "wears", "object": "shirt.15"}, {"subject": "man.12", "predicate": "wears", "object": "jean.11"}]
713126
Generate a structured scene graph for an image of size (600 x 450) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (600 x 450) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "jacket.1", "bbox": [104, 168, 415, 445]}, {"id": "cup.2", "bbox": [0, 367, 22, 399]}, {"id": "cup.3", "bbox": [158, 290, 199, 353]}, {"id": "curtain.4", "bbox": [0, 0, 83, 353]}, {"id": "glass.5", "bbox": [62, 353, 155, 406]}, {"id": "glass.6", "bbox": [60, 353, 86, 407]}, {"id": "hand.7", "bbox": [286, 101, 334, 194]}, {"id": "hand.8", "bbox": [126, 272, 209, 334]}, {"id": "man.9", "bbox": [96, 32, 421, 450]}, {"id": "man.10", "bbox": [81, 118, 172, 329]}, {"id": "phone.11", "bbox": [281, 104, 311, 161]}, {"id": "plate.12", "bbox": [14, 408, 100, 448]}, {"id": "shirt.13", "bbox": [229, 160, 301, 420]}, {"id": "table.14", "bbox": [0, 333, 187, 449]}, {"id": "tie.15", "bbox": [111, 188, 148, 287]}, {"id": "window.16", "bbox": [0, 0, 63, 304]}, {"id": "woman.17", "bbox": [329, 114, 470, 450]}, {"id": "glass.18", "bbox": [107, 384, 125, 423]}, {"id": "tie.19", "bbox": [117, 182, 148, 237]}, {"id": "plate.20", "bbox": [11, 421, 97, 445]}]
[{"subject": "man.9", "predicate": "wearing", "object": "shirt.13"}, {"subject": "glass.6", "predicate": "on", "object": "table.14"}, {"subject": "glass.5", "predicate": "on", "object": "table.14"}, {"subject": "cup.2", "predicate": "on", "object": "table.14"}, {"subject": "curtain.4", "predicate": "on", "object": "window.16"}, {"subject": "glass.18", "predicate": "on", "object": "table.14"}, {"subject": "man.9", "predicate": "wearing", "object": "jacket.1"}, {"subject": "cup.3", "predicate": "in", "object": "hand.8"}, {"subject": "hand.8", "predicate": "of", "object": "man.9"}, {"subject": "phone.11", "predicate": "in", "object": "hand.7"}, {"subject": "hand.7", "predicate": "of", "object": "man.9"}, {"subject": "jacket.1", "predicate": "on", "object": "man.9"}, {"subject": "man.10", "predicate": "wearing", "object": "tie.15"}, {"subject": "man.10", "predicate": "wearing", "object": "tie.19"}, {"subject": "plate.12", "predicate": "on", "object": "table.14"}]
713127
Generate a structured scene graph for an image of size (768 x 1024) using the following format: <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign a unique ID for each object using the format `"object_name.number"` (e.g., `"person.1"`, `"bike.2"`). - Provide its bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Represent interactions accurately using `"subject"`, `"predicate"`, and `"object"`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
Generate a structured scene graph for an image of size (768 x 1024) using the specified object and relationship categories. ### **Output Format:** <answer> { "objects": [ {"id": "object_name.number", "bbox": [x1, y1, x2, y2]}, ... ], "relationships": [ {"subject": "object_name.number", "predicate": "relationship_type", "object": "object_name.number"}, ... ] } </answer> ### **Guidelines:** - **Objects:** - Assign unique IDs in the format `"object_name.number"` (e.g., `"person.1"`). The **object_name** must belong to the predefined object set: `["airplane", "animal", "arm", "bag", "banana", "basket", "beach", "bear", "bed", "bench", "bike", "bird", "board", "boat", "book", "boot", "bottle", "bowl", "box", "boy", "branch", "building", "bus", "cabinet", "cap", "car", "cat", "chair", "child", "clock", "coat", "counter", "cow", "cup", "curtain", "desk", "dog", "door", "drawer", "ear", "elephant", "engine", "eye", "face", "fence", "finger", "flag", "flower", "food", "fork", "fruit", "giraffe", "girl", "glass", "glove", "guy", "hair", "hand", "handle", "hat", "head", "helmet", "hill", "horse", "house", "jacket", "jean", "kid", "kite", "lady", "lamp", "laptop", "leaf", "leg", "letter", "light", "logo", "man", "men", "motorcycle", "mountain", "mouth", "neck", "nose", "number", "orange", "pant", "paper", "paw", "people", "person", "phone", "pillow", "pizza", "plane", "plant", "plate", "player", "pole", "post", "pot", "racket", "railing", "rock", "roof", "room", "screen", "seat", "sheep", "shelf", "shirt", "shoe", "short", "sidewalk", "sign", "sink", "skateboard", "ski", "skier", "sneaker", "snow", "sock", "stand", "street", "surfboard", "table", "tail", "tie", "tile", "tire", "toilet", "towel", "tower", "track", "train", "tree", "truck", "trunk", "umbrella", "vase", "vegetable", "vehicle", "wave", "wheel", "window", "windshield", "wing", "wire", "woman", "zebra"]`. - Provide a bounding box `[x1, y1, x2, y2]` in integer pixel format. - Include all visible objects, even if they have no relationships. - **Relationships:** - Define relationships using `"subject"`, `"predicate"`, and `"object"`. - The **predicate** must belong to the predefined relationship set: `["above", "across", "against", "along", "and", "at", "attached to", "behind", "belonging to", "between", "carrying", "covered in", "covering", "eating", "flying in", "for", "from", "growing on", "hanging from", "has", "holding", "in", "in front of", "laying on", "looking at", "lying on", "made of", "mounted on", "near", "of", "on", "on back of", "over", "painted on", "parked on", "part of", "playing", "riding", "says", "sitting on", "standing on", "to", "under", "using", "walking in", "walking on", "watching", "wearing", "wears", "with"]`. - Omit relationships for orphan objects. ### **Example Output:** <answer> { "objects": [ {"id": "person.1", "bbox": [120, 200, 350, 700]}, {"id": "bike.2", "bbox": [100, 600, 400, 800]}, {"id": "helmet.3", "bbox": [150, 150, 280, 240]}, {"id": "tree.4", "bbox": [500, 100, 750, 700]} ], "relationships": [ {"subject": "person.1", "predicate": "riding", "object": "bike.2"}, {"subject": "person.1", "predicate": "wearing", "object": "helmet.3"} ] } </answer> Now, generate the complete scene graph for the provided image:
[{"id": "bag.1", "bbox": [542, 649, 672, 805]}, {"id": "basket.2", "bbox": [408, 548, 538, 591]}, {"id": "bottle.3", "bbox": [674, 480, 706, 545]}, {"id": "bowl.4", "bbox": [664, 574, 740, 628]}, {"id": "counter.5", "bbox": [259, 523, 767, 944]}, {"id": "sink.6", "bbox": [516, 589, 673, 622]}, {"id": "towel.7", "bbox": [618, 381, 680, 476]}, {"id": "counter.8", "bbox": [262, 504, 739, 665]}, {"id": "drawer.9", "bbox": [628, 638, 761, 729]}]
[{"subject": "bowl.4", "predicate": "on", "object": "counter.5"}, {"subject": "bag.1", "predicate": "on", "object": "drawer.9"}]