Causal3D / README.md
LLDDSS's picture
Add 'real_scenes_spring_scene_128P' config data files
e30c01c verified
|
raw
history blame
14.1 kB
---
license: cc-by-4.0
language:
- en
size_categories:
- 100K<n<1M
pretty_name: Causal3D
tags:
- Causality
- Computer_Vision
dataset_info:
- config_name: hypothetical_scenes_Hypothetic_v2_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2137802.16
num_examples: 14368
download_size: 1216402
dataset_size: 2137802.16
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1768656.0
num_examples: 10000
download_size: 939321
dataset_size: 1768656.0
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1355793.0
num_examples: 10000
download_size: 617191
dataset_size: 1355793.0
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1658091.5
num_examples: 10050
download_size: 915357
dataset_size: 1658091.5
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2012079.0
num_examples: 10000
download_size: 907646
dataset_size: 2012079.0
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2786917.0
num_examples: 10000
download_size: 1262319
dataset_size: 2786917.0
- config_name: hypothetical_scenes_Hypothetic_v5_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1915161.0
num_examples: 10000
download_size: 1048013
dataset_size: 1915161.0
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1914621.0
num_examples: 10000
download_size: 1051232
dataset_size: 1914621.0
- config_name: hypothetical_scenes_rendered_h3_linear_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 5363548.0
num_examples: 15000
download_size: 2476630
dataset_size: 5363548.0
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 3810279.01
num_examples: 10223
download_size: 1726102
dataset_size: 3810279.01
- config_name: hypothetical_scenes_rendered_h5_nonlinear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 5416339.2
num_examples: 10360
download_size: 2056220
dataset_size: 5416339.2
- config_name: real_scenes_Real_Parabola
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1282248.0
num_examples: 10000
download_size: 768322
dataset_size: 1282248.0
- config_name: real_scenes_Real_magnet_v3
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 72702.0
num_examples: 481
download_size: 48333
dataset_size: 72702.0
- config_name: real_scenes_Real_magnet_v3_5
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 228301.613
num_examples: 1503
download_size: 152240
dataset_size: 228301.613
- config_name: real_scenes_Real_parabola_multi_view
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 0
num_examples: 0
download_size: 0
dataset_size: 0
- config_name: real_scenes_Real_spring_v3_256P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 134466.0
num_examples: 450
download_size: 24433
dataset_size: 134466.0
- config_name: real_scenes_Water_flow_scene_render
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 3533718.0
num_examples: 10000
download_size: 1813070
dataset_size: 3533718.0
- config_name: real_scenes_convex_len_render_images
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 161948.95
num_examples: 1078
download_size: 106436
dataset_size: 161948.95
- config_name: real_scenes_real_pendulum
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2884667.13
num_examples: 9999
download_size: 1558722
dataset_size: 2884667.13
- config_name: real_scenes_rendered_magnetic_128
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2290040.5
num_examples: 8350
download_size: 933644
dataset_size: 2290040.5
- config_name: real_scenes_rendered_reflection_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2723942.65
num_examples: 9995
download_size: 1665779
dataset_size: 2723942.65
- config_name: real_scenes_seesaw_scene_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2234514.0
num_examples: 10000
download_size: 1257167
dataset_size: 2234514.0
- config_name: real_scenes_spring_scene_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2506086.0
num_examples: 10000
download_size: 951360
dataset_size: 2506086.0
configs:
- config_name: hypothetical_scenes_Hypothetic_v2_linear
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v2_linear/train-*
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v2_nonlinear/train-*
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v3_fully_connected_linear/train-*
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v4_linear_full_connected/train-*
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v4_linear_v/train-*
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v4_nonlinear_v/train-*
- config_name: hypothetical_scenes_Hypothetic_v5_linear
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v5_linear/train-*
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v5_linear_full_connected/train-*
- config_name: hypothetical_scenes_rendered_h3_linear_128P
data_files:
- split: train
path: hypothetical_scenes_rendered_h3_linear_128P/train-*
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
data_files:
- split: train
path: hypothetical_scenes_rendered_h3_nonlinear_128P/train-*
- config_name: hypothetical_scenes_rendered_h5_nonlinear
data_files:
- split: train
path: hypothetical_scenes_rendered_h5_nonlinear/train-*
- config_name: real_scenes_Real_Parabola
data_files:
- split: train
path: real_scenes_Real_Parabola/train-*
- config_name: real_scenes_Real_magnet_v3
data_files:
- split: train
path: real_scenes_Real_magnet_v3/train-*
default: true
- config_name: real_scenes_Real_magnet_v3_5
data_files:
- split: train
path: real_scenes_Real_magnet_v3_5/train-*
- config_name: real_scenes_Real_spring_v3_256P
data_files:
- split: train
path: real_scenes_Real_spring_v3_256P/train-*
- config_name: real_scenes_Water_flow_scene_render
data_files:
- split: train
path: real_scenes_Water_flow_scene_render/train-*
- config_name: real_scenes_convex_len_render_images
data_files:
- split: train
path: real_scenes_convex_len_render_images/train-*
- config_name: real_scenes_real_pendulum
data_files:
- split: train
path: real_scenes_real_pendulum/train-*
- config_name: real_scenes_rendered_magnetic_128
data_files:
- split: train
path: real_scenes_rendered_magnetic_128/train-*
- config_name: real_scenes_rendered_reflection_128P
data_files:
- split: train
path: real_scenes_rendered_reflection_128P/train-*
- config_name: real_scenes_seesaw_scene_128P
data_files:
- split: train
path: real_scenes_seesaw_scene_128P/train-*
- config_name: real_scenes_spring_scene_128P
data_files:
- split: train
path: real_scenes_spring_scene_128P/train-*
---
# 🧠 Causal3D: A Benchmark for Visual Causal Reasoning
**Causal3D** is a comprehensive benchmark designed to evaluate models’ abilities to uncover *latent causal relations* from structured and visual data. This dataset integrates **3D-rendered scenes** with **tabular causal annotations**, providing a unified testbed for advancing *causal discovery*, *causal representation learning*, and *causal reasoning* with **vision-language models (VLMs)** and **large language models (LLMs)**.
---
## 📌 Overview
While recent progress in AI and computer vision has been remarkable, there remains a major gap in evaluating causal reasoning over complex visual inputs. **Causal3D** bridges this gap by providing:
- **19 curated 3D-scene datasets** simulating diverse real-world causal phenomena.
- Paired **tabular causal graphs** and **image observations** across multiple views and backgrounds.
- Benchmarks for evaluating models in both **structured** (tabular) and **unstructured** (image) modalities.
---
## 🧩 Dataset Structure
Each sub-dataset (scene) contains:
- `images/`: Rendered images under different camera views and backgrounds.
- `tabular.csv`: Instance-level annotations including object attributes in causal graph.
## 🖼️ Visual Previews
Below are example images from different Causal3D scenes:
<table>
<tr>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/parabola.png" width="250"/><br/>parabola
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/convex.png" width="250"/><br/>convex
</td>
</tr>
<tr>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/magnetic.png" width="200"/><br/>magnetic
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/pendulum.png" width="200"/><br/>pendulum
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/reflection.png" width="200"/><br/>reflection
</td>
</tr>
<tr>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/seesaw.png" width="200"/><br/>seesaw
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/spring.png" width="200"/><br/>spring
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/water_flow.png" width="200"/><br/>water_flow
</td>
</tr>
</table>
<!-- - `causal_graph.json`: Ground-truth causal structure (as adjacency matrix or graph).
- `view_info.json`: Camera/viewpoint metadata.
- `split.json`: Recommended train/val/test splits for benchmarking. -->
---
## 🎯 Evaluation Tasks
Causal3D supports a range of causal reasoning tasks, including:
- **Causal discovery** from image sequences or tables
- **Intervention prediction** under modified object states or backgrounds
- **Counterfactual reasoning** across views
- **VLM-based causal inference** given multimodal prompts
---
## 📊 Benchmark Results
We evaluate a diverse set of methods:
- **Classical causal discovery**: PC, GES, NOTEARS
- **Causal representation learning**: CausalVAE, ICM-based encoders
- **Vision-Language and Large Language Models**: GPT-4V, Claude-3.5, Gemini-1.5
**Key Findings**:
- As causal structures grow more complex, **model performance drops significantly** without strong prior assumptions.
- A noticeable performance gap exists between models trained on structured data and those applied directly to visual inputs.
---
<!-- ## 🔍 Example Use Case
```python
from causal3d import load_scene_data
scene = "SpringPendulum"
data = load_scene_data(scene, split="train")
images = data["images"]
metadata = data["table"]
graph = data["causal_graph"] -->