# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Adrenocortical_Cancer" | |
cohort = "GSE67766" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer" | |
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE67766" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE67766.csv" | |
out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE67766.csv" | |
out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE67766.csv" | |
json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data( | |
matrix_file, | |
background_prefixes, | |
clinical_prefixes | |
) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1. Determine if gene expression data is available | |
is_gene_available = True # Based on background context, we assume gene expression data is present | |
# 2. Determine availability for trait, age, and gender from the sample characteristics dictionary | |
# Given the dictionary: {0: ['cell line: SW-13']}, there is no variation or explicit mention | |
# of trait, age, or gender. Hence, they are all considered unavailable. | |
trait_row = None | |
age_row = None | |
gender_row = None | |
# 2.2 Define data type conversion functions | |
def convert_trait(x: str): | |
# No trait data available. Return None for any input. | |
return None | |
def convert_age(x: str): | |
# No age data available. Return None for any input. | |
return None | |
def convert_gender(x: str): | |
# No gender data available. Return None for any input. | |
return None | |
# 3. Save Metadata (initial filtering) | |
# 'is_trait_available' is False because 'trait_row' is None | |
is_trait_available = (trait_row is not None) | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4. Clinical Feature Extraction | |
# Since 'trait_row' is None, we skip this step (no clinical data to extract). | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# These gene identifiers ('ILMN_...') are Illumina probe IDs rather than standard human gene symbols. | |
# Hence, gene mapping to official symbols is required. | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1) Identify the columns for gene identifier and gene symbol based on the annotation preview. | |
probe_col = "ID" | |
symbol_col = "Symbol" | |
# 2) Build the gene mapping dataframe from the annotation dataframe. | |
mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col) | |
# 3) Apply the mapping to convert probe-level expression to gene-level expression. | |
gene_data = apply_gene_mapping(gene_data, mapping_df) | |
# STEP 7: Data Normalization and Linking | |
# 1. Normalize gene symbols in the obtained gene expression data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file, index=True) | |
# Since trait data is unavailable (trait_row = None), we cannot link or analyze trait/demographic features. | |
# We must finalize this dataset as unusable for downstream analysis. | |
# Provide a dummy dataframe and a boolean for is_biased to satisfy the library requirements. | |
import pandas as pd | |
empty_df = pd.DataFrame() | |
# 5. Perform final quality validation and save cohort info. | |
# We set is_biased=False to fulfill the function parameters; it will still result in is_usable=False | |
# because is_trait_available=False. | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False, | |
is_biased=False, | |
df=empty_df, | |
note="No trait data available for this cohort." | |
) | |
# 6. Since no trait data is available, is_usable must be False, so we skip saving the final linked data. |