|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Adrenocortical_Cancer" |
|
cohort = "GSE90713" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE90713" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE90713.csv" |
|
out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE90713.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE90713.csv" |
|
json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
background_prefixes, |
|
clinical_prefixes |
|
) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("Sample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 0 |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(x: str) -> Optional[int]: |
|
""" |
|
Convert the tissue annotation to binary values for adrenocortical carcinoma (1) or normal adrenal (0). |
|
Unknown values return None. |
|
""" |
|
parts = x.split(':') |
|
if len(parts) < 2: |
|
return None |
|
val = parts[-1].strip().lower() |
|
if val in ["adrenocortical carcinoma", "acc", "tumor"]: |
|
return 1 |
|
elif val in ["normal adrenal", "normal"]: |
|
return 0 |
|
else: |
|
return None |
|
|
|
def convert_age(x: str) -> Optional[float]: |
|
"""No age data available, so always return None.""" |
|
return None |
|
|
|
def convert_gender(x: str) -> Optional[int]: |
|
"""No gender data available, so always return None.""" |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
preview_result = preview_df(selected_clinical_df) |
|
print("Preview of Clinical Data:", preview_result) |
|
selected_clinical_df.to_csv(out_clinical_data_file, index=False) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
|
|
print("requires_gene_mapping = True") |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
probe_col = 'ID' |
|
gene_symbol_col = 'Gene Symbol' |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
print("Mapped Gene Expression Data (first 5 rows):") |
|
print(gene_data.head(5)) |
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file, index=True) |
|
|
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) |
|
|
|
|
|
processed_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=processed_data, |
|
note="Trait data present and mapped from step 2." |
|
) |
|
|
|
|
|
if is_usable: |
|
processed_data.to_csv(out_data_file, index=True) |