# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Allergies" | |
cohort = "GSE169149" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Allergies" | |
in_cohort_dir = "../DATA/GEO/Allergies/GSE169149" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Allergies/GSE169149.csv" | |
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE169149.csv" | |
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE169149.csv" | |
json_path = "./output/preprocess/1/Allergies/cohort_info.json" | |
# STEP 1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data( | |
matrix_file, | |
background_prefixes, | |
clinical_prefixes | |
) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("\nSample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# Step 1: Determine gene expression availability | |
is_gene_available = True # Based on the background, we assume this dataset likely contains gene expression data. | |
# Step 2: Identify data availability for 'trait', 'age', and 'gender' | |
# According to the sample characteristics dictionary, there is no mention of "Allergies," "age," or "gender." | |
trait_row = None | |
age_row = None | |
gender_row = None | |
# Step 2.2: Define data type conversion functions | |
def convert_trait(value: str) -> Optional[int]: | |
# No actual data for 'Allergies' in this dataset | |
return None | |
def convert_age(value: str) -> Optional[float]: | |
# No age information in this dataset | |
return None | |
def convert_gender(value: str) -> Optional[int]: | |
# No gender information in this dataset | |
return None | |
# Step 3: Conduct initial filtering and save metadata | |
is_trait_available = (trait_row is not None) | |
validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# Step 4: If trait data is available, extract clinical features; otherwise, skip. | |
if trait_row is not None: | |
selected_clinical_df = geo_select_clinical_features( | |
clinical_data, | |
trait=trait, | |
trait_row=trait_row, | |
convert_trait=convert_trait, | |
age_row=age_row, | |
convert_age=convert_age, | |
gender_row=gender_row, | |
convert_gender=convert_gender | |
) | |
preview = preview_df(selected_clinical_df) | |
selected_clinical_df.to_csv(out_clinical_data_file, index=False) | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# Based on the numeric nature of these identifiers, they do not appear to be conventional human gene symbols. | |
# Therefore, they require mapping to known gene symbols. | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1. Decide which columns map the same kind of IDs as the gene expression data and which store the gene symbols | |
# From the annotation preview, the "ID" column matches the expression data identifiers (1, 2, 3, ...). | |
# The "Assay" column appears to contain the gene symbols. | |
# 2. Extract a gene mapping dataframe | |
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Assay") | |
# 3. Convert probe-level measurements to gene expression data | |
gene_data = apply_gene_mapping(gene_data, mapping_df) | |
# Display the first few rows of the resulting gene expression dataframe for verification | |
print(gene_data.head()) | |
import pandas as pd | |
# STEP 7: Data Normalization and (Conditional) Linking | |
# 1. Normalize gene symbols in the obtained gene expression data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file, index=True) | |
print(f"Saved normalized gene data to {out_gene_data_file}") | |
# Since trait_row was None in step 2, we have no clinical features extracted. | |
# Hence 'clinical_data_selected' does not exist, and there is no trait column to link or to analyze. | |
# We will proceed with final validation using the fact that trait data is unavailable. | |
is_trait_available = False | |
is_gene_available = True # As concluded in step 2, it is a gene expression dataset | |
if not is_trait_available: | |
# Without trait data, we cannot link or do the usual missing-value handling by trait. | |
# We still provide the normalized_gene_data to the validator (though it won't be used for trait analysis). | |
final_data = normalized_gene_data | |
is_biased = False # We must supply a boolean; no trait data => cannot assess bias | |
# 5. Final quality validation | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available, | |
is_biased=is_biased, | |
df=final_data, | |
note="No trait data available in this dataset." | |
) | |
# 6. If the dataset is usable, save final data; however, in this scenario it likely won't be. | |
if is_usable: | |
final_data.to_csv(out_data_file) | |
print(f"Saved final linked data to {out_data_file}") | |
else: | |
print("Data not usable; skipping final output.") | |
else: | |
# If trait data were available, we would link, handle missing values, check bias, and finalize. | |
# This branch is skipped because 'is_trait_available' is False. | |
pass |