# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Allergies" | |
cohort = "GSE84046" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Allergies" | |
in_cohort_dir = "../DATA/GEO/Allergies/GSE84046" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Allergies/GSE84046.csv" | |
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE84046.csv" | |
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE84046.csv" | |
json_path = "./output/preprocess/1/Allergies/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data( | |
matrix_file, | |
background_prefixes, | |
clinical_prefixes | |
) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1. Gene Expression Data Availability | |
is_gene_available = True # The study clearly mentions "whole genome gene expression" in adipose tissue. | |
# 2. Variable Availability | |
# Trait (Allergies): Not found in the sample characteristics. | |
trait_row = None | |
# Age: We can infer from date of birth, which is stored under key=5 "date of birth". | |
age_row = 5 | |
# Gender: Found under key=4 "sexe: Male/Female". | |
gender_row = 4 | |
# 2.2 Data Type Conversion Functions | |
def convert_trait(value: str): | |
# No trait data, so return None. | |
return None | |
def convert_age(value: str): | |
# Example format: "date of birth (dd-mm-yyyy): 1952-06-17" | |
# We parse out '1952-06-17' and convert it to approximate age. | |
try: | |
date_str = value.split(':', 1)[1].strip() # e.g. "1952-06-17" | |
birth_year = int(date_str.split('-')[0]) | |
# Approximate age by subtracting from current year | |
approx_age = 2023 - birth_year | |
if approx_age < 0 or approx_age > 120: | |
return None | |
return float(approx_age) | |
except: | |
return None | |
def convert_gender(value: str): | |
# Example format: "sexe: Male" or "sexe: Female" | |
try: | |
gender_str = value.split(':', 1)[1].strip().lower() | |
if gender_str == "male": | |
return 1 | |
elif gender_str == "female": | |
return 0 | |
else: | |
return None | |
except: | |
return None | |
# 3. Save Metadata (Initial Filtering) | |
is_trait_available = (trait_row is not None) | |
validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4. Clinical Feature Extraction | |
# Since trait_row is None, we skip extracting clinical features for the trait "Allergies". | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# The gene identifiers in the provided index are numeric, suggesting they are not standard human gene symbols. | |
# These likely need to be mapped to gene symbols. | |
requires_gene_mapping = True | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1. Decide which columns in 'gene_annotation' match the probe IDs in 'gene_data' (i.e., "ID") | |
# and which column contains text that can lead to actual gene symbols (i.e., "gene_assignment"). | |
prob_col = "ID" | |
gene_col = "gene_assignment" | |
# 2. Get a gene mapping dataframe using these two columns. | |
gene_mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col) | |
# 3. Apply the gene mapping to convert probe-level data to gene-level data. | |
gene_data = apply_gene_mapping(gene_data, gene_mapping_df) | |
# STEP 7: Data Normalization and Linking | |
# In this dataset, we determined in Step 2 that trait data is not available (trait_row = None). | |
# Therefore, we cannot link clinical and genetic data or perform trait-based processing. | |
# Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation. | |
# 1. Normalize gene symbols in the obtained gene expression data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file, index=True) | |
# 2. Since trait data is missing, skip linking clinical and genetic data, | |
# skip missing-value handling and bias detection for the trait. | |
# 3. Conduct final validation and record info. | |
# Since trait data is unavailable, set is_trait_available=False, | |
# pass a dummy/empty DataFrame and is_biased=False (it won't be used). | |
dummy_df = pd.DataFrame() | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False, | |
is_biased=False, | |
df=dummy_df, | |
note="No trait data found; skipped clinical-linking steps." | |
) | |
# 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data. | |
if is_usable: | |
dummy_df.to_csv(out_data_file, index=True) |