|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Aniridia" |
|
cohort = "GSE137997" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Aniridia" |
|
in_cohort_dir = "../DATA/GEO/Aniridia/GSE137997" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Aniridia/GSE137997.csv" |
|
out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE137997.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE137997.csv" |
|
json_path = "./output/preprocess/1/Aniridia/cohort_info.json" |
|
|
|
|
|
|
|
from tools.preprocess import * |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
background_prefixes, |
|
clinical_prefixes |
|
) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = 2 |
|
age_row = 0 |
|
gender_row = 1 |
|
|
|
def convert_trait(value: str) -> int: |
|
""" |
|
Convert 'disease: AAK' or 'disease: healthy control' to binary (1 for aniridia, 0 for control). |
|
Unknown or unexpected values become None. |
|
""" |
|
try: |
|
val = value.split(':', 1)[1].strip().lower() |
|
if 'aak' in val: |
|
return 1 |
|
elif 'healthy' in val: |
|
return 0 |
|
else: |
|
return None |
|
except: |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
""" |
|
Convert 'age: 20' etc. to a float (continuous). Unknown values become None. |
|
""" |
|
try: |
|
val = value.split(':', 1)[1].strip() |
|
return float(val) |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
""" |
|
Convert 'gender: F', 'gender: M', 'gender: W' to binary (female=0, male=1). |
|
'W' presumed female. Unknown or unexpected become None. |
|
""" |
|
try: |
|
val = value.split(':', 1)[1].strip().lower() |
|
if val in ['f', 'w', 'female', 'woman', 'women']: |
|
return 0 |
|
elif val in ['m', 'male']: |
|
return 1 |
|
else: |
|
return None |
|
except: |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
preview_result = preview_df(selected_clinical_df) |
|
print("Preview of selected clinical features:", preview_result) |
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file, index=False) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
print("requires_gene_mapping = False") |
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
print(f"Saved normalized gene data to {out_gene_data_file}") |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Cohort data successfully processed with trait-based analysis." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file, index=True) |
|
print(f"Saved final linked data to {out_data_file}") |
|
else: |
|
print("The dataset is not usable for trait-based association. Skipping final output.") |