Liu-Hy's picture
Add files using upload-large-folder tool
187fbda verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Arrhythmia"
cohort = "GSE136992"
# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE136992"
# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE136992.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE136992.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE136992.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine gene expression data availability
is_gene_available = True # This dataset includes Illumina whole genome gene expression data
# 2.1 Determine data availability (keys for trait, age, gender)
trait_row = None # No row found for "Arrhythmia" in the sample characteristics
age_row = 2 # Row 2 contains multiple distinct 'age' values
gender_row = 3 # Row 3 contains multiple distinct 'gender' values
# 2.2 Define data type conversions
def convert_trait(value: str):
# Trait data is not available; return None
return None
def convert_age(value: str):
"""Convert 'age: XX weeks' to a numeric type."""
try:
# Extract the substring after 'age:' and strip spaces
raw = value.split(':', 1)[1].strip()
# Remove the word 'weeks' if present
raw = raw.lower().replace('weeks', '').strip()
return float(raw)
except:
return None
def convert_gender(value: str):
"""Convert 'gender: male/female' to binary (0=female, 1=male)."""
try:
raw = value.split(':', 1)[1].strip().lower()
if raw == 'male':
return 1
elif raw == 'female':
return 0
else:
return None
except:
return None
# 3. Conduct initial filtering and save metadata
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Skip clinical feature extraction, since trait_row is None
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These identifiers, starting with "ILMN_", are Illumina probe IDs rather than standard gene symbols.
# Therefore, they need to be mapped to the corresponding human gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Decide which columns hold the probe IDs (same as gene_data.index) and the gene symbols.
# From the annotation preview, "ID" matches the probe IDs, and "Symbol" contains the gene symbols.
# 2. Get a gene mapping dataframe (probe ID -> gene symbol).
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")
# 3. Convert the probe-level expression data to gene-level data using the mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking
# First, check if trait data is available.
# From our previous steps, we know 'trait_row' was None, so trait data is not available.
# Hence, we skip linking, missing-value handling, and bias checks,
# but we still need to do final validation to mark it unusable.
if not is_trait_available:
import pandas as pd
print("Trait data is not available. Skipping link, missing-value handling, and bias checks.")
# Provide a boolean for is_biased to avoid the ValueError in final validation.
# The dataset is not usable because the trait is missing, so we can set is_biased=True.
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True, # gene data is available,
is_trait_available=False, # but trait data is missing
is_biased=True, # no valid trait -> not usable
df=pd.DataFrame(), # an empty DataFrame suffices here
note="Trait data not found; dataset is not usable."
)
print("Dataset was not deemed usable due to missing trait data; final linked data not saved.")
else:
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. Link the clinical and genetic data on sample IDs (requires clinical data from step 2)
linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)
# 3. Handle missing values in linked data
linked_data = handle_missing_values(linked_data, trait_col=trait)
# 4. Determine bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait)
# 5. Final validation
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Trait data and gene data successfully linked."
)
# 6. Save final linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)
print(f"Saved final linked data to {out_data_file}")
else:
print("Dataset was not deemed usable; final linked data not saved.")