|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Asthma" |
|
cohort = "GSE123086" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Asthma" |
|
in_cohort_dir = "../DATA/GEO/Asthma/GSE123086" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Asthma/GSE123086.csv" |
|
out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE123086.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE123086.csv" |
|
json_path = "./output/preprocess/1/Asthma/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("Sample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = 1 |
|
age_row = 3 |
|
gender_row = None |
|
|
|
|
|
|
|
def convert_trait(x: str) -> Optional[int]: |
|
""" |
|
Convert trait data into a binary variable, 1 for ASTHMA, 0 otherwise. |
|
If not parsable, return None. |
|
""" |
|
parts = x.split(':') |
|
if len(parts) < 2: |
|
return None |
|
val = parts[1].strip().upper() |
|
return 1 if val == "ASTHMA" else 0 |
|
|
|
def convert_age(x: str) -> Optional[float]: |
|
""" |
|
Convert age data into a continuous float. If the string does not |
|
contain 'age:' or cannot be parsed, return None. |
|
""" |
|
parts = x.split(':') |
|
if len(parts) < 2: |
|
return None |
|
if "age" in parts[0].lower(): |
|
try: |
|
return float(parts[1].strip()) |
|
except ValueError: |
|
return None |
|
return None |
|
|
|
def convert_gender(x: str) -> Optional[int]: |
|
""" |
|
Convert gender data to 0 (female) or 1 (male). If not parsable, return None. |
|
""" |
|
parts = x.split(':') |
|
if len(parts) < 2: |
|
return None |
|
if "sex" in parts[0].lower(): |
|
val = parts[1].strip().lower() |
|
if val == "female": |
|
return 0 |
|
elif val == "male": |
|
return 1 |
|
return None |
|
|
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
preview_clin = preview_df(selected_clinical_df) |
|
print("Preview of selected clinical features:", preview_clin) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file, index=False) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
print("requires_gene_mapping = True") |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
def apply_gene_mapping_entrez(expression_df: pd.DataFrame, mapping_df: pd.DataFrame) -> pd.DataFrame: |
|
""" |
|
Convert measured data about gene probes (indexed by numeric 'ID') into gene-level data |
|
(using numeric Entrez IDs). Handles one-to-many or many-to-one mappings by splitting |
|
probe expression values equally among mapped genes, and summing where multiple probes |
|
map to the same gene. |
|
""" |
|
|
|
mapping_df = mapping_df.drop_duplicates(subset=['ID', 'Gene']) |
|
mapping_df = mapping_df.dropna(subset=['ID', 'Gene']) |
|
|
|
|
|
expression_df = expression_df[~expression_df.index.duplicated(keep='first')] |
|
|
|
|
|
mapping_df.set_index('ID', inplace=True) |
|
|
|
|
|
mapping_df['Gene'] = mapping_df['Gene'].astype(str) |
|
mapping_df['Gene'] = mapping_df['Gene'].apply( |
|
lambda x: x.split('//') if '//' in x else x.split(';') if ';' in x else [x] |
|
) |
|
|
|
|
|
mapping_df['num_genes'] = mapping_df['Gene'].apply(len) |
|
|
|
|
|
mapping_df = mapping_df.explode('Gene').dropna(subset=['Gene']) |
|
|
|
|
|
merged_df = mapping_df.join(expression_df, how='inner') |
|
|
|
|
|
|
|
expr_cols = [c for c in merged_df.columns if c not in ['Gene', 'num_genes']] |
|
|
|
|
|
merged_df[expr_cols] = merged_df[expr_cols].div(merged_df['num_genes'].replace(0, 1), axis=0) |
|
|
|
|
|
gene_expression_df = merged_df.groupby('Gene')[expr_cols].sum() |
|
|
|
return gene_expression_df |
|
|
|
|
|
probe_col = "ID" |
|
gene_col = "ENTREZ_GENE_ID" |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col) |
|
|
|
|
|
|
|
gene_data = apply_gene_mapping_entrez(gene_data, mapping_df) |
|
|
|
|
|
print("Mapped gene_data shape:", gene_data.shape) |
|
print("First 10 gene identifiers in mapped data:", gene_data.index[:10].tolist()) |
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_trait_biased, |
|
df=unbiased_linked_data |
|
) |
|
|
|
|
|
if is_usable: |
|
unbiased_linked_data.to_csv(out_data_file) |