# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Asthma" | |
cohort = "GSE184382" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Asthma" | |
in_cohort_dir = "../DATA/GEO/Asthma/GSE184382" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Asthma/GSE184382.csv" | |
out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE184382.csv" | |
out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE184382.csv" | |
json_path = "./output/preprocess/1/Asthma/cohort_info.json" | |
# STEP 1 | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data( | |
matrix_file, | |
background_prefixes, | |
clinical_prefixes | |
) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("\nSample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1. Gene Expression Data Availability | |
is_gene_available = True # This dataset includes transcriptome microarray data. | |
# 2. Variable Availability | |
trait_row = None # No row indicates "asthma" or similar | |
age_row = None # No row for age | |
gender_row = None # No row for gender | |
# 2.2 Data Type Conversion | |
def convert_trait(value: str) -> int: | |
""" | |
Convert raw trait string to a binary indicator (0 or 1). | |
Since trait_row is None, this function won't be used. | |
""" | |
# Placeholder implementation | |
return None | |
def convert_age(value: str) -> float: | |
""" | |
Convert raw age string to a float (continuous). | |
Since age_row is None, this function won't be used. | |
""" | |
# Placeholder implementation | |
return None | |
def convert_gender(value: str) -> int: | |
""" | |
Convert raw gender string to 0 (female) or 1 (male). | |
Since gender_row is None, this function won't be used. | |
""" | |
# Placeholder implementation | |
return None | |
# 3. Save Metadata | |
# Determine trait availability | |
is_trait_available = (trait_row is not None) | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4. Clinical Feature Extraction | |
# Since trait_row is None, we skip feature extraction. | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# These identifiers (e.g., "A_19_P...", "(+)E1A_r60_...", "3xSLv1") are not standard human gene symbols. | |
# They appear to be array or custom IDs that require mapping to gene symbols. | |
requires_gene_mapping = True | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1 & 2. Identify the columns in the annotation corresponding to the gene expression IDs and the gene symbols | |
# Here, 'ID' holds probe identifiers matching those in 'gene_data' | |
# and 'GENE_SYMBOL' holds the corresponding gene symbols. | |
gene_mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL") | |
# 3. Convert probe-level measurements to gene-level data using the mapping. | |
gene_data = apply_gene_mapping(gene_data, gene_mapping_df) | |
# STEP 7: Data Normalization and Linking | |
# We know from prior steps: | |
# - Trait is NOT available (trait_row = None), so no clinical CSV was saved. | |
# - We do have gene data, so we will at least normalize it. | |
# 1) Normalize gene symbols | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file) | |
print(f"Saved normalized gene data to {out_gene_data_file}") | |
# 2) Since trait is not available, we cannot link or handle clinical data. | |
# We'll set up placeholders for final validation. | |
is_trait_available = False | |
trait_biased = False # Arbitrarily set; the library requires a boolean. | |
# 3) We have no clinical data to integrate; skip missing value handling. | |
# 4) With no trait, we cannot check bias meaningfully. Skipped. | |
# 5) Final dataset validation | |
# The library requires df and is_biased if is_final=True, so we provide an empty DataFrame. | |
# This ensures it records the dataset as not usable. | |
empty_df = pd.DataFrame() | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, # Gene data is available | |
is_trait_available=False, # Trait is not available | |
is_biased=trait_biased, | |
df=empty_df, | |
note="No trait data; final record." | |
) | |
# 6) If the linked data were usable, we would save it. But here, is_usable will be False. | |
if is_usable: | |
# This block won't run in our scenario, but included for completeness | |
empty_df.to_csv(out_data_file) | |
print(f"Saved final linked data to {out_data_file}") | |
else: | |
print("Data not usable (no trait). No final linked file was saved.") |