|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Asthma" |
|
cohort = "GSE230164" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Asthma" |
|
in_cohort_dir = "../DATA/GEO/Asthma/GSE230164" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Asthma/GSE230164.csv" |
|
out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE230164.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE230164.csv" |
|
json_path = "./output/preprocess/1/Asthma/cohort_info.json" |
|
|
|
|
|
|
|
from tools.preprocess import * |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
background_prefixes, |
|
clinical_prefixes |
|
) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = 0 |
|
|
|
|
|
|
|
def convert_trait(value: str) -> Optional[int]: |
|
""" |
|
Convert trait values to binary (e.g., 'asthma' -> 1, 'control' or 'healthy' -> 0). |
|
Returns None if unknown. |
|
""" |
|
|
|
parts = value.split(':', 1) |
|
val = parts[1].strip().lower() if len(parts) > 1 else value.lower() |
|
|
|
|
|
if 'asthma' in val: |
|
return 1 |
|
if 'control' in val or 'healthy' in val: |
|
return 0 |
|
|
|
return None |
|
|
|
def convert_age(value: str) -> Optional[float]: |
|
""" |
|
Convert age values to continuous floats. |
|
Returns None if parsing fails or data is unknown. |
|
""" |
|
parts = value.split(':', 1) |
|
val = parts[1].strip() if len(parts) > 1 else value |
|
try: |
|
return float(val) |
|
except ValueError: |
|
return None |
|
|
|
def convert_gender(value: str) -> Optional[int]: |
|
""" |
|
Convert gender to binary (female -> 0, male -> 1). |
|
Returns None if unknown. |
|
""" |
|
parts = value.split(':', 1) |
|
val = parts[1].strip().lower() if len(parts) > 1 else value.lower() |
|
if 'female' in val: |
|
return 0 |
|
if 'male' in val: |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
|
|
dataset_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
|
|
print("requires_gene_mapping = True") |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
prob_col = 'ID' |
|
gene_col = 'Symbol' |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
print(f"Saved normalized gene data to {out_gene_data_file}") |
|
|
|
|
|
|
|
|
|
empty_df = pd.DataFrame() |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=True, |
|
df=empty_df, |
|
note="Trait data is unavailable; skipping linking and final data steps." |
|
) |
|
|
|
print("Trait data unavailable. Skipping linking and final data output.") |