# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Breast_Cancer" | |
cohort = "GSE249377" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Breast_Cancer" | |
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE249377" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Breast_Cancer/GSE249377.csv" | |
out_gene_data_file = "./output/preprocess/1/Breast_Cancer/gene_data/GSE249377.csv" | |
out_clinical_data_file = "./output/preprocess/1/Breast_Cancer/clinical_data/GSE249377.csv" | |
json_path = "./output/preprocess/1/Breast_Cancer/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1. Gene Expression Data Availability | |
is_gene_available = True # From background info, this dataset provides transcriptomic (gene expression) data. | |
# 2. Variable Availability and Data Type Conversion | |
# After reviewing the sample characteristics, none of the rows provide distinct "Breast_Cancer" statuses, | |
# nor do they provide "age" or "gender" information. The experiment uses only MCF7 (a breast cancer cell line), | |
# which does not vary among samples in a way that is useful for association studies. | |
trait_row = None | |
age_row = None | |
gender_row = None | |
# Define conversion functions (they won't be used here, but we must still define them): | |
def convert_trait(value: str) -> Optional[Union[float, int]]: | |
return None # No trait row available, so always return None | |
def convert_age(value: str) -> Optional[float]: | |
return None # No age row available, so always return None | |
def convert_gender(value: str) -> Optional[int]: | |
return None # No gender row available, so always return None | |
# 3. Save Metadata (initial filtering) | |
# If trait_row is None, is_trait_available should be False | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=(trait_row is not None) | |
) | |
# 4. Clinical Feature Extraction | |
# Since trait_row is None, we do not perform clinical feature extraction and skip this step. | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) |