|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Endometriosis" |
|
cohort = "GSE165004" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Endometriosis" |
|
in_cohort_dir = "../DATA/GEO/Endometriosis/GSE165004" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Endometriosis/GSE165004.csv" |
|
out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/GSE165004.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/GSE165004.csv" |
|
json_path = "./output/preprocess/1/Endometriosis/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("Sample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str): |
|
|
|
return None |
|
|
|
def convert_age(value: str): |
|
|
|
return None |
|
|
|
def convert_gender(value: str): |
|
|
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
_ = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
requires_gene_mapping = True |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
probe_col = "ID" |
|
gene_symbol_col = "GENE_SYMBOL" |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
print("Mapped Gene Expression Data shape:", gene_data.shape) |
|
print("First 10 Gene Symbols in Mapped Expression Data:", gene_data.index[:10].tolist()) |
|
|
|
|
|
import pandas as pd |
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
print("Normalized gene expression data saved to:", out_gene_data_file) |
|
|
|
|
|
|
|
is_trait_available = False |
|
|
|
if not is_trait_available: |
|
print("Trait data is not available -> skipping clinical-data linking and subsequent steps.") |
|
|
|
|
|
empty_df = pd.DataFrame() |
|
is_biased_placeholder = False |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=is_biased_placeholder, |
|
df=empty_df, |
|
note="No trait data available. Performed final validation with empty DataFrame." |
|
) |
|
|
|
if is_usable: |
|
print("Unexpected: dataset marked usable despite missing trait. No final data saved.") |
|
else: |
|
print("Dataset is not usable (missing trait). No final data saved.") |
|
else: |
|
|
|
pass |