|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Acute_Myeloid_Leukemia" |
|
cohort = "GSE222616" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" |
|
in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222616" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE222616.csv" |
|
out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE222616.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE222616.csv" |
|
json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = None |
|
|
|
|
|
age_row = None |
|
|
|
|
|
gender_row = None |
|
|
|
|
|
def convert_trait(value): |
|
|
|
return None |
|
|
|
def convert_age(value): |
|
|
|
return None |
|
|
|
def convert_gender(value): |
|
|
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("First 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation columns and example values:") |
|
print(preview_df(gene_annotation)) |
|
|
|
probe_col = "ID" |
|
gene_col = "gene_assignment" |
|
mapping_data = gene_annotation[[probe_col, gene_col]] |
|
mapping_data = mapping_data.dropna() |
|
mapping_data = mapping_data.rename(columns={probe_col: 'ID', gene_col: 'Gene'}) |
|
mapping_data['Gene'] = mapping_data['Gene'].apply(extract_human_gene_symbols) |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=False, |
|
df=gene_data, |
|
note="Only gene expression data available, no clinical information found" |
|
) |
|
|
|
|
|
if is_usable: |
|
gene_data.to_csv(out_data_file) |