Liu-Hy's picture
Add files using upload-large-folder tool
25a2692 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Allergies"
cohort = "GSE84046"
# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE84046"
# Output paths
out_data_file = "./output/preprocess/3/Allergies/GSE84046.csv"
out_gene_data_file = "./output/preprocess/3/Allergies/gene_data/GSE84046.csv"
out_clinical_data_file = "./output/preprocess/3/Allergies/clinical_data/GSE84046.csv"
json_path = "./output/preprocess/3/Allergies/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on background info, this is gene expression data from adipose tissue
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Trait - protein diet type in Feature 1
trait_row = 1
def convert_trait(x):
if not isinstance(x, str):
return None
value = x.split(': ')[-1].lower()
if 'high' in value:
return 1 # High protein diet
elif 'normal' in value:
return 0 # Normal protein diet
return None
# Age - can be calculated from birth date in Feature 5
age_row = 5
def convert_age(x):
if not isinstance(x, str):
return None
value = x.split(': ')[-1]
try:
birth_year = int(value.split('-')[0])
# Study year appears to be around 2013-2014 based on Series info
study_year = 2014
return study_year - birth_year
except:
return None
# Gender - Feature 4
gender_row = 4
def convert_gender(x):
if not isinstance(x, str):
return None
value = x.split(': ')[-1].lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract clinical features
clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview and save clinical data
print("Preview of clinical data:")
print(preview_df(clinical_df))
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Looking at the gene identifiers, they appear to be numerical IDs from Illumina array probes
# These need to be mapped to human gene symbols
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'gene_assignment'):")
print(gene_annotation[['ID', 'gene_assignment']].head().to_string())
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'gene_assignment' column: Contains gene information from which symbols can be extracted")
# Get mapping data from annotation, using 'ID' and 'gene_assignment' columns
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
# Convert probe-level measurements to gene-level data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
# Preview the results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few genes and their expression values:")
print(gene_data.head())
print("\nFirst 20 gene symbols:")
print(gene_data.index[:20])
# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save normalized gene data
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
try:
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine if features are biased
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note="Gene expression data successfully mapped and linked with clinical features"
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)
except Exception as e:
print(f"Error in data linking and processing: {str(e)}")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=True,
df=pd.DataFrame(),
note=f"Data processing failed: {str(e)}"
)