|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Bladder_Cancer" |
|
cohort = "GSE201395" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Bladder_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Bladder_Cancer/GSE201395" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Bladder_Cancer/GSE201395.csv" |
|
out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/GSE201395.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/GSE201395.csv" |
|
json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(x): |
|
return None |
|
|
|
def convert_age(x): |
|
return None |
|
|
|
def convert_gender(x): |
|
return None |
|
|
|
|
|
is_initial_check = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation columns and example values:") |
|
print(preview_df(gene_annotation)) |
|
|
|
prob_col = 'probeset_id' |
|
gene_col = 'gene_assignment' |
|
|
|
|
|
gene_mapping = gene_annotation[[prob_col, gene_col]] |
|
gene_mapping = gene_mapping.rename(columns={prob_col: 'ID', gene_col: 'Gene'}) |
|
gene_mapping = gene_mapping.dropna() |
|
gene_mapping = gene_mapping.astype({'ID': 'str'}) |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, gene_mapping) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
print("Shape of processed gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of processed data:") |
|
print(gene_data.head()) |
|
|
|
gene_data.index = gene_data.index.str.replace('-mRNA', '') |
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
is_biased = True |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=is_biased, |
|
df=gene_data.T, |
|
note="All samples are cancer cases (no controls), making trait data unavailable for associative analysis." |
|
) |