|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Depression" |
|
cohort = "GSE201332" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Depression" |
|
in_cohort_dir = "../DATA/GEO/Depression/GSE201332" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Depression/GSE201332.csv" |
|
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE201332.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE201332.csv" |
|
json_path = "./output/preprocess/3/Depression/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
age_row = 3 |
|
|
|
gender_row = 2 |
|
|
|
|
|
def convert_trait(value): |
|
"""Convert MDD status to binary: 0 for control, 1 for MDD""" |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip().lower() |
|
if 'mdd' in value or 'depression' in value: |
|
return 1 |
|
elif 'healthy' in value or 'control' in value: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value): |
|
"""Convert age to continuous numeric value""" |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip().lower() |
|
|
|
try: |
|
age = int(value.replace('y','')) |
|
return age |
|
except: |
|
return None |
|
|
|
def convert_gender(value): |
|
"""Convert gender to binary: 0 for female, 1 for male""" |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip().lower() |
|
if 'female' in value: |
|
return 0 |
|
elif 'male' in value: |
|
return 1 |
|
return None |
|
|
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
clinical_features = geo_select_clinical_features(clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
|
|
preview_dict = preview_df(clinical_features) |
|
print("\nPreview of clinical features:") |
|
print(preview_dict) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame shape:", genetic_df.shape) |
|
print("\nFirst 20 row IDs:") |
|
print(genetic_df.index[:20]) |
|
|
|
print("\nPreview of first few rows and columns:") |
|
print(genetic_df.head().iloc[:, :5]) |
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = pd.read_csv(soft_file, compression='gzip', delimiter='\t', skiprows=163, nrows=54675) |
|
|
|
|
|
gene_metadata = gene_metadata[~gene_metadata['Name'].str.contains('Control|control|Corner', na=False)] |
|
gene_metadata = gene_metadata[~gene_metadata['Gene Symbol'].isna()] |
|
|
|
|
|
print("DataFrame shape after filtering:", gene_metadata.shape) |
|
print("\nColumn names:") |
|
print(gene_metadata.columns) |
|
print("\nPreview of gene annotation data:") |
|
print(preview_df(gene_metadata)) |
|
|
|
def get_probe_gene_mapping(file_path): |
|
rows = [] |
|
with gzip.open(file_path, 'rt') as f: |
|
in_spot_section = False |
|
for line in f: |
|
line = line.strip() |
|
|
|
|
|
if line.startswith('!Platform_table_begin'): |
|
in_spot_section = True |
|
|
|
next(f) |
|
continue |
|
elif line.startswith('!Platform_table_end'): |
|
in_spot_section = False |
|
continue |
|
|
|
if in_spot_section and line: |
|
fields = line.split('\t') |
|
|
|
rows.append([fields[0], fields[2]]) |
|
|
|
|
|
gene_metadata = pd.DataFrame(rows, columns=['ID', 'Gene']) |
|
|
|
gene_metadata = gene_metadata[ |
|
(gene_metadata['Gene'].notna()) & |
|
(gene_metadata['Gene'] != '') & |
|
(~gene_metadata['Gene'].str.contains('control|Control|Corner', na=False, regex=True)) |
|
] |
|
return gene_metadata |
|
|
|
|
|
gene_metadata = get_probe_gene_mapping(soft_file) |
|
|
|
|
|
print("DataFrame shape after filtering:", gene_metadata.shape) |
|
print("\nColumn names:") |
|
print(gene_metadata.columns) |
|
print("\nPreview of gene annotation data:") |
|
print(preview_df(gene_metadata)) |
|
|
|
def extract_platform_table(file_path): |
|
platform_data = [] |
|
with gzip.open(file_path, 'rt') as f: |
|
in_table = False |
|
for line in f: |
|
if line.startswith('!Platform_table_begin'): |
|
headers = next(f).strip().split('\t') |
|
in_table = True |
|
continue |
|
if line.startswith('!Platform_table_end'): |
|
break |
|
if in_table and line.strip(): |
|
platform_data.append(line.strip().split('\t')) |
|
return pd.DataFrame(platform_data, columns=headers) |
|
|
|
|
|
gene_metadata = extract_platform_table(soft_file) |
|
|
|
|
|
print("Column names in gene_metadata:") |
|
print(gene_metadata.columns) |
|
print("\nPreview of gene metadata:") |
|
print(preview_df(gene_metadata)) |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
|
|
print("\nGene expression data shape:", gene_data.shape) |
|
print("\nFirst few gene symbols:") |
|
print(gene_data.index[:10]) |
|
print("\nPreview of gene expression values:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Available columns:", gene_metadata.columns) |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_metadata, prob_col='IDs', gene_col='Gene Symbols') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="MDD vs healthy controls study" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Column names:") |
|
print(gene_metadata.columns) |
|
print("\nPreview of gene annotation data:") |
|
print(preview_df(gene_metadata)) |