|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Duchenne_Muscular_Dystrophy" |
|
cohort = "GSE48828" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy" |
|
in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE48828" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE48828.csv" |
|
out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE48828.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE48828.csv" |
|
json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 0 |
|
age_row = 2 |
|
gender_row = 1 |
|
|
|
|
|
def convert_trait(value: str) -> Optional[int]: |
|
"""Convert trait status to binary""" |
|
if not value or ':' not in value: |
|
return None |
|
diagnosis = value.split(': ')[1].strip().lower() |
|
if 'duchenne muscular dystrophy' in diagnosis: |
|
return 1 |
|
elif 'normal' in diagnosis: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> Optional[float]: |
|
"""Convert age to float""" |
|
if not value or ':' not in value: |
|
return None |
|
age = value.split(': ')[1].strip().lower() |
|
try: |
|
if age in ['na', 'not available']: |
|
return None |
|
return float(age) |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> Optional[int]: |
|
"""Convert gender to binary""" |
|
if not value or ':' not in value: |
|
return None |
|
gender = value.split(': ')[1].strip().lower() |
|
if gender == 'f': |
|
return 0 |
|
elif gender == 'm': |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of processed clinical data:") |
|
print(preview_df(selected_clinical_df)) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame shape:", genetic_df.shape) |
|
print("\nFirst 20 row IDs:") |
|
print(genetic_df.index[:20]) |
|
|
|
print("\nPreview of first few rows and columns:") |
|
print(genetic_df.head().iloc[:, :5]) |
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Column names:") |
|
print(gene_metadata.columns) |
|
print("\nPreview of gene annotation data:") |
|
print(preview_df(gene_metadata)) |
|
|
|
|
|
|
|
|
|
|
|
def parse_gene_symbols(text): |
|
if text == '---' or pd.isna(text): |
|
return None |
|
|
|
gene_entries = text.split('///') |
|
symbols = [] |
|
for entry in gene_entries: |
|
parts = entry.strip().split('//') |
|
if len(parts) >= 3: |
|
symbol = parts[1].strip() |
|
if symbol != '---': |
|
symbols.append(symbol) |
|
return symbols if symbols else None |
|
|
|
|
|
mapping_df = gene_metadata[['ID', 'gene_assignment']].copy() |
|
|
|
|
|
mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols) |
|
mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene']) |
|
|
|
|
|
mapping_df = mapping_df.explode('Gene') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
print("Gene expression data shape after mapping:", gene_data.shape) |
|
print("\nPreview of gene expression data:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
def parse_gene_symbols(text): |
|
if text == '---' or pd.isna(text): |
|
return None |
|
|
|
entries = text.split('///') |
|
symbols = [] |
|
for entry in entries: |
|
parts = [p.strip() for p in entry.split('//')] |
|
if len(parts) >= 2: |
|
symbol = parts[1] |
|
if symbol != '---': |
|
symbols.append(symbol) |
|
return symbols if symbols else None |
|
|
|
|
|
mapping_df = gene_metadata[['ID', 'gene_assignment']].copy() |
|
|
|
|
|
mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols) |
|
mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene']) |
|
|
|
|
|
mapping_df = mapping_df.explode('Gene') |
|
print(f"Number of probe-gene mappings: {len(mapping_df)}") |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
print(f"Number of genes after mapping: {len(gene_data)}") |
|
|
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
print(f"Number of genes after normalization: {len(gene_data)}") |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |