Liu-Hy's picture
Add files using upload-large-folder tool
75faa94 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Duchenne_Muscular_Dystrophy"
cohort = "GSE48828"
# Input paths
in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE48828"
# Output paths
out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE48828.csv"
out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE48828.csv"
out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE48828.csv"
json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this is an Affymetrix exon array study measuring gene expression
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Row identifiers for each variable
trait_row = 0 # 'diagnosis' row contains trait info
age_row = 2 # 'age (yrs)' row contains age info
gender_row = 1 # 'gender' row contains gender info
# 2.2 Conversion functions
def convert_trait(value: str) -> Optional[int]:
"""Convert trait status to binary"""
if not value or ':' not in value:
return None
diagnosis = value.split(': ')[1].strip().lower()
if 'duchenne muscular dystrophy' in diagnosis:
return 1
elif 'normal' in diagnosis:
return 0
return None
def convert_age(value: str) -> Optional[float]:
"""Convert age to float"""
if not value or ':' not in value:
return None
age = value.split(': ')[1].strip().lower()
try:
if age in ['na', 'not available']:
return None
return float(age)
except:
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary"""
if not value or ':' not in value:
return None
gender = value.split(': ')[1].strip().lower()
if gender == 'f':
return 0
elif gender == 'm':
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract Clinical Features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
print("Preview of processed clinical data:")
print(preview_df(selected_clinical_df))
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The row IDs are numerical probe IDs from microarray platforms, not human gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify columns for gene identifiers and symbols
# 'ID' column contains same identifiers as gene expression data
# 'gene_assignment' contains gene symbols but needs parsing
# Function to parse gene symbols from complex strings
def parse_gene_symbols(text):
if text == '---' or pd.isna(text):
return None
# Split by /// to handle multiple assignments
gene_entries = text.split('///')
symbols = []
for entry in gene_entries:
parts = entry.strip().split('//')
if len(parts) >= 3: # We need at least 3 parts to get to the gene symbol
symbol = parts[1].strip() # Gene symbol is in the second position
if symbol != '---':
symbols.append(symbol)
return symbols if symbols else None
# Create initial mapping dataframe
mapping_df = gene_metadata[['ID', 'gene_assignment']].copy()
# Extract gene symbols and clean up mapping
mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols)
mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene'])
# Explode lists of genes into separate rows
mapping_df = mapping_df.explode('Gene')
# Apply gene mapping to probe-level measurements
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Normalize gene symbols to standard form
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print shape and preview mapped data
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head().iloc[:, :5])
# 1. Since gene_data is empty, we need to remap gene symbols
def parse_gene_symbols(text):
if text == '---' or pd.isna(text):
return None
# Split entries by /// for multiple assignments
entries = text.split('///')
symbols = []
for entry in entries:
parts = [p.strip() for p in entry.split('//')]
if len(parts) >= 2: # Need at least 2 parts
symbol = parts[1] # Second part contains the gene symbol
if symbol != '---':
symbols.append(symbol)
return symbols if symbols else None
# Create initial mapping dataframe
mapping_df = gene_metadata[['ID', 'gene_assignment']].copy()
# Extract gene symbols and clean up mapping
mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols)
mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene'])
# Explode lists of genes into separate rows
mapping_df = mapping_df.explode('Gene')
print(f"Number of probe-gene mappings: {len(mapping_df)}")
# Apply gene mapping to probe-level measurements
gene_data = apply_gene_mapping(genetic_df, mapping_df)
print(f"Number of genes after mapping: {len(gene_data)}")
# After remapping, proceed with the rest of step 7
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
print(f"Number of genes after normalization: {len(gene_data)}")
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)