|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Eczema" |
|
cohort = "GSE123086" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Eczema" |
|
in_cohort_dir = "../DATA/GEO/Eczema/GSE123086" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Eczema/GSE123086.csv" |
|
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE123086.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE123086.csv" |
|
json_path = "./output/preprocess/3/Eczema/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
def convert_trait(x): |
|
if pd.isna(x): |
|
return None |
|
|
|
value = x.split(": ")[1].strip() |
|
if value == "ATOPIC_ECZEMA": |
|
return 1 |
|
elif value == "HEALTHY_CONTROL": |
|
return 0 |
|
return None |
|
|
|
def convert_age(x): |
|
if pd.isna(x): |
|
return None |
|
try: |
|
|
|
age = int(x.split(": ")[1]) |
|
return age |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
if pd.isna(x): |
|
return None |
|
|
|
value = x.split(": ")[1].strip() |
|
if value.upper() == "FEMALE": |
|
return 0 |
|
elif value.upper() == "MALE": |
|
return 1 |
|
return None |
|
|
|
|
|
trait_row = 1 |
|
age_row = 3 |
|
gender_row = 2 |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
clinical_df = pd.DataFrame(clinical_data) |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(selected_clinical_df)) |
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame shape:", genetic_df.shape) |
|
print("\nFirst 20 row IDs:") |
|
print(genetic_df.index[:20]) |
|
|
|
print("\nPreview of first few rows and columns:") |
|
print(genetic_df.head().iloc[:, :5]) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Sample of probe ID field:") |
|
print(gene_metadata['ID'].head()) |
|
print("\nAll column names:") |
|
print(list(gene_metadata.columns)) |
|
print("\nSample of gene metadata rows:") |
|
pd.set_option('display.max_columns', None) |
|
print(gene_metadata.head()) |
|
|
|
|
|
gene_metadata = pd.read_csv(soft_file, compression='gzip', sep='\t', comment=None, on_bad_lines='skip') |
|
|
|
|
|
id_col = [col for col in gene_metadata.columns if 'ID_REF' in col or 'ID' in col][0] |
|
gene_col = [col for col in gene_metadata.columns if 'GENE_SYMBOL' in col][0] |
|
|
|
|
|
mapping_df = gene_metadata[[id_col, gene_col]].copy() |
|
mapping_df.columns = ['ID', 'Gene'] |
|
mapping_df = mapping_df.dropna() |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
print("Gene data shape after mapping:", gene_data.shape) |
|
print("\nPreview of first few genes and samples:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'ENTREZ_GENE_ID') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
print("Gene data shape after mapping:", gene_data.shape) |
|
print("\nPreview of first few genes and samples:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_data = pd.read_csv(out_gene_data_file, index_col=0) |
|
|
|
if len(gene_data) == 0: |
|
|
|
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
|
|
trait_biased, clinical_df = judge_and_remove_biased_features(clinical_df, trait) |
|
|
|
validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=clinical_df, |
|
note="Gene mapping failed - no valid gene expression data produced" |
|
) |
|
else: |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Study comparing Eczema patient vs healthy control gene expression in CD4+ T cells" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
|
|
gender_row = 3 |
|
|
|
|
|
age_row = 3 |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert trait values to binary (0: control, 1: case)""" |
|
if not isinstance(value, str): |
|
return None |
|
value = value.split(': ')[-1].strip().upper() |
|
if "ATOPIC_ECZEMA" in value: |
|
return 1 |
|
elif "HEALTHY_CONTROL" in value: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age values to continuous numbers""" |
|
if not isinstance(value, str) or not value.startswith('age: '): |
|
return None |
|
try: |
|
return float(value.split(': ')[1]) |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender values to binary (0: female, 1: male)""" |
|
if not isinstance(value, str) or not value.startswith('Sex: '): |
|
return None |
|
value = value.split(': ')[1].strip().upper() |
|
if value == 'FEMALE': |
|
return 0 |
|
elif value == 'MALE': |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(selected_clinical_df)) |
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
is_gene_available = True |
|
|
|
|
|
def convert_trait(value): |
|
if pd.isna(value): |
|
return None |
|
try: |
|
val = float(value.split(":")[-1].strip() if ":" in value else value) |
|
return val |
|
except: |
|
return None |
|
|
|
def convert_age(value): |
|
if pd.isna(value): |
|
return None |
|
try: |
|
val = float(value.split(":")[-1].strip() if ":" in value else value) |
|
return val |
|
except: |
|
return None |
|
|
|
def convert_gender(value): |
|
if pd.isna(value): |
|
return None |
|
try: |
|
val = float(value.split(":")[-1].strip() if ":" in value else value) |
|
return val |
|
except: |
|
return None |
|
|
|
|
|
trait_row = 0 |
|
age_row = 1 |
|
gender_row = 2 |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("\nPreview of extracted clinical features:") |
|
print(preview_df(selected_clinical_df)) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |