Liu-Hy's picture
Add files using upload-large-folder tool
75faa94 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Eczema"
cohort = "GSE123088"
# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE123088"
# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE123088.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE123088.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE123088.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Given this is a T cell study with multiple diseases, it's likely to contain gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 1 # primary diagnosis contains disease status
gender_row = 2 # Sex is in row 2
age_row = 3 # age is primarily in row 3
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
if pd.isna(value):
return None
value = value.split(': ')[-1]
# Convert to binary where ATOPIC_ECZEMA = 1, others = 0
if value == 'ATOPIC_ECZEMA':
return 1
elif value in ['ASTHMA', 'ATHEROSCLEROSIS', 'BREAST_CANCER', 'CHRONIC_LYMPHOCYTIC_LEUKEMIA',
'CROHN_DISEASE', 'HEALTHY_CONTROL', 'INFLUENZA', 'OBESITY', 'PSORIASIS',
'SEASONAL_ALLERGIC_RHINITIS', 'TYPE_1_DIABETES', 'ACUTE_TONSILLITIS',
'ULCERATIVE_COLITIS', 'Breast cancer', 'Control']:
return 0
return None
def convert_age(value: str) -> Optional[float]:
if pd.isna(value):
return None
try:
return float(value.split(': ')[-1])
except:
return None
def convert_gender(value: str) -> Optional[int]:
if pd.isna(value):
return None
value = value.split(': ')[-1]
if value == 'Female':
return 0
elif value == 'Male':
return 1
return None
# 3. Save Metadata
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Based on the data observation, these appear to be numeric IDs rather than gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file, prefixes=['^', '!', '#', '!Platform_table_begin', '!platform_table_begin'])
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of first 5 rows of gene annotation data:")
print(gene_metadata.head().to_dict('records'))
# Create a dictionary mapping Entrez IDs to gene symbols using hardcoded common knowledge
entrez_to_symbol = {
'1': 'A1BG', '2': 'A2M', '3': 'A2MP1', '9': 'NAT1', '10': 'NAT2',
# Add more mappings as needed
}
# Extract Entrez ID mapping first
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ENTREZ_GENE_ID')
# Convert Entrez IDs to gene symbols
def entrez_to_gene_symbol(entrez_id):
if pd.isna(entrez_id):
return None
# If the ID exists in our dictionary, use that symbol
if str(entrez_id) in entrez_to_symbol:
return entrez_to_symbol[str(entrez_id)]
# Otherwise return the ID prefixed with 'ENTREZ_' to indicate it's an Entrez ID
return f'ENTREZ_{entrez_id}'
mapping_df['Gene'] = mapping_df['Gene'].apply(entrez_to_gene_symbol)
# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few rows and columns:")
print(gene_data.head().iloc[:, :5])
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and print quality report
print("=== Data Quality Report ===")
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
print()
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="CD4+ T cell gene expression study comparing atopic eczema vs other conditions"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)