|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Eczema" |
|
cohort = "GSE123088" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Eczema" |
|
in_cohort_dir = "../DATA/GEO/Eczema/GSE123088" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Eczema/GSE123088.csv" |
|
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE123088.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE123088.csv" |
|
json_path = "./output/preprocess/3/Eczema/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("=== Dataset Background Information ===") |
|
print(background_info) |
|
print("\n=== Sample Characteristics ===") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 1 |
|
gender_row = 2 |
|
age_row = 3 |
|
|
|
|
|
def convert_trait(value: str) -> Optional[int]: |
|
if pd.isna(value): |
|
return None |
|
value = value.split(': ')[-1] |
|
|
|
if value == 'ATOPIC_ECZEMA': |
|
return 1 |
|
elif value in ['ASTHMA', 'ATHEROSCLEROSIS', 'BREAST_CANCER', 'CHRONIC_LYMPHOCYTIC_LEUKEMIA', |
|
'CROHN_DISEASE', 'HEALTHY_CONTROL', 'INFLUENZA', 'OBESITY', 'PSORIASIS', |
|
'SEASONAL_ALLERGIC_RHINITIS', 'TYPE_1_DIABETES', 'ACUTE_TONSILLITIS', |
|
'ULCERATIVE_COLITIS', 'Breast cancer', 'Control']: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> Optional[float]: |
|
if pd.isna(value): |
|
return None |
|
try: |
|
return float(value.split(': ')[-1]) |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> Optional[int]: |
|
if pd.isna(value): |
|
return None |
|
value = value.split(': ')[-1] |
|
if value == 'Female': |
|
return 0 |
|
elif value == 'Male': |
|
return 1 |
|
return None |
|
|
|
|
|
_ = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of clinical features:") |
|
print(preview_df(clinical_features)) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_df = get_genetic_data(matrix_file) |
|
|
|
|
|
print("DataFrame shape:", genetic_df.shape) |
|
print("\nFirst 20 row IDs:") |
|
print(genetic_df.index[:20]) |
|
|
|
print("\nPreview of first few rows and columns:") |
|
print(genetic_df.head().iloc[:, :5]) |
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file, prefixes=['^', '!', '#', '!Platform_table_begin', '!platform_table_begin']) |
|
|
|
print("Column names:") |
|
print(gene_metadata.columns) |
|
print("\nPreview of first 5 rows of gene annotation data:") |
|
print(gene_metadata.head().to_dict('records')) |
|
|
|
entrez_to_symbol = { |
|
'1': 'A1BG', '2': 'A2M', '3': 'A2MP1', '9': 'NAT1', '10': 'NAT2', |
|
|
|
} |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ENTREZ_GENE_ID') |
|
|
|
|
|
def entrez_to_gene_symbol(entrez_id): |
|
if pd.isna(entrez_id): |
|
return None |
|
|
|
if str(entrez_id) in entrez_to_symbol: |
|
return entrez_to_symbol[str(entrez_id)] |
|
|
|
return f'ENTREZ_{entrez_id}' |
|
|
|
mapping_df['Gene'] = mapping_df['Gene'].apply(entrez_to_gene_symbol) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_df, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
print("Gene expression data shape:", gene_data.shape) |
|
print("\nFirst few rows and columns:") |
|
print(gene_data.head().iloc[:, :5]) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
print("=== Data Quality Report ===") |
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
print() |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="CD4+ T cell gene expression study comparing atopic eczema vs other conditions" |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |