Liu-Hy's picture
Add files using upload-large-folder tool
ff3b0fa verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Endometriosis"
cohort = "GSE165004"
# Input paths
in_trait_dir = "../DATA/GEO/Endometriosis"
in_cohort_dir = "../DATA/GEO/Endometriosis/GSE165004"
# Output paths
out_data_file = "./output/preprocess/3/Endometriosis/GSE165004.csv"
out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE165004.csv"
out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE165004.csv"
json_path = "./output/preprocess/3/Endometriosis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Based on series title and summary, this is an RNA expression study
# 2.1 Data Availability
trait_row = 0 # subject status/group indicates disease status
age_row = None # Age not available
gender_row = None # Gender not needed since all subjects are female based on study design
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert trait status to binary"""
if not isinstance(value, str):
return None
value = value.lower().split(': ')[-1]
if 'control' in value:
return 0
elif 'patient' in value: # Both RPL and UIF patients are cases
return 1
return None
convert_age = None # Not needed since age data unavailable
convert_gender = None # Not needed since all subjects are female
# 3. Save Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# These appear to be probe IDs (numbered 1-N) rather than human gene symbols
# Looking at the data, we see simple numeric identifiers (1, 2, 3, etc)
# which need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Preview the annotation data
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Extract probe-gene mapping using ID and GENE_SYMBOL columns
# ID in gene_metadata matches numeric IDs in gene expression data
# GENE_SYMBOL contains human gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# Apply mapping to convert probe measurements to gene expression
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Preview mapped gene expression data
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few genes and their expression values:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# Rename the trait row to match expected column name
linked_data = linked_data.rename(index={'0': trait})
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells."
)
# 6. Save if usable
if is_usable:
linked_data.to_csv(out_data_file)
# Cannot proceed without seeing sample characteristics data and background information
# Setting everything to None/False as a safe default
is_gene_available = False
trait_row = None
age_row = None
gender_row = None
def convert_trait(x):
return None
def convert_age(x):
return None
def convert_gender(x):
return None
# Save metadata about dataset usability
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Based on background info mentioning RNA expression and DEGs
# 2.1 Data Availability
# Feature 0 contains the trait info (Control vs RPL/UIF patients)
trait_row = 0
# Age and gender data not available (not in characteristics and no mention of varying values)
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if not isinstance(x, str):
return None
value = x.split(': ')[-1].strip().lower()
if 'control' in value:
return 0
elif 'rpl' in value or 'uif' in value:
return 1
return None
def convert_age(x):
return None # Not used since age data not available
def convert_gender(x):
return None # Not used since gender data not available
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of selected clinical features:")
print(preview_df(selected_clinical_df))
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# Explicitly rename trait row from '0' to 'Endometriosis'
linked_data = linked_data.rename(index={'0': 'Endometriosis'})
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, 'Endometriosis')
# 4. Check for bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Endometriosis')
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study examining RNA expression in RPL/UI patients vs controls."
)
# 6. Save if usable
if is_usable:
linked_data.to_csv(out_data_file)