|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Endometriosis" |
|
cohort = "GSE37837" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Endometriosis" |
|
in_cohort_dir = "../DATA/GEO/Endometriosis/GSE37837" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Endometriosis/GSE37837.csv" |
|
out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE37837.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE37837.csv" |
|
json_path = "./output/preprocess/3/Endometriosis/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 2 |
|
|
|
age_row = 0 |
|
|
|
gender_row = None |
|
|
|
|
|
def convert_trait(x): |
|
if x is None: |
|
return None |
|
|
|
value = x.split(':', 1)[1].strip() if ':' in x else x.strip() |
|
|
|
if 'eutopic' in value.lower(): |
|
return 0 |
|
elif 'ectopic' in value.lower(): |
|
return 1 |
|
return None |
|
|
|
def convert_age(x): |
|
if x is None: |
|
return None |
|
|
|
try: |
|
return int(x.split(':', 1)[1].strip()) |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
|
|
return None |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features(clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(clinical_features)) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Column names:", gene_metadata.columns.tolist()) |
|
print("\nFirst few rows preview:") |
|
print(preview_df(gene_metadata)) |
|
|
|
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') |
|
|
|
|
|
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data) |
|
|
|
|
|
print("Shape of mapped gene expression data:", gene_data.shape) |
|
print("\nFirst few rows:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene symbols:") |
|
print(gene_data.index[:20]) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_features = clinical_features.T |
|
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |
|
|
|
is_gene_available = False |
|
|
|
|
|
def convert_trait(x: str) -> Optional[int]: |
|
if pd.isna(x): |
|
return None |
|
value = str(x).lower() |
|
if 'normal' in value or 'control' in value: |
|
return 0 |
|
elif 'endometrios' in value: |
|
return 1 |
|
return None |
|
|
|
def convert_age(x: str) -> Optional[float]: |
|
if pd.isna(x): |
|
return None |
|
if ':' in str(x): |
|
value = x.split(':')[1].strip() |
|
try: |
|
return float(value) |
|
except: |
|
return None |
|
return None |
|
|
|
def convert_gender(x: str) -> Optional[int]: |
|
if pd.isna(x): |
|
return None |
|
value = str(x).lower() |
|
if 'female' in value or 'f' in value: |
|
return 0 |
|
elif 'male' in value or 'm' in value: |
|
return 1 |
|
return None |
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
print("Preview of processed clinical data:") |
|
print(preview_df(selected_clinical_df)) |
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 2 |
|
|
|
age_row = 0 |
|
|
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert tissue type to binary endometriosis indicator""" |
|
if not value: |
|
return None |
|
value = value.split(": ")[1].lower() |
|
if "endometrioma_ectopic" in value: |
|
return 1 |
|
elif "autologous_eutopic" in value: |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age string to float""" |
|
if not value: |
|
return None |
|
try: |
|
return float(value.split(": ")[1]) |
|
except: |
|
return None |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=True |
|
) |
|
|
|
|
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=None, |
|
convert_gender=None |
|
) |
|
|
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(selected_clinical_df)) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=2, |
|
convert_trait=lambda x: 1 if "endometrioma_ectopic" in str(x).lower() else 0 if "autologous_eutopic" in str(x).lower() else None, |
|
age_row=0, |
|
convert_age=lambda x: float(x.split(": ")[1]) if x and ":" in x else None |
|
) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |