|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Endometriosis" |
|
|
|
|
|
tcga_root_dir = "../DATA/TCGA" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Endometriosis/TCGA.csv" |
|
out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/TCGA.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/TCGA.csv" |
|
json_path = "./output/preprocess/3/Endometriosis/cohort_info.json" |
|
|
|
|
|
selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)" |
|
cohort_dir = os.path.join(tcga_root_dir, selected_cohort) |
|
|
|
|
|
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
import os |
|
|
|
cohort_dir = os.path.join(tcga_root_dir, "TCGA_Endometrioid_Cancer_(UCEC)") |
|
|
|
|
|
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) |
|
clinical_df = pd.read_csv(clinical_file_path, index_col=0) |
|
|
|
|
|
age_preview = {} |
|
if candidate_age_cols: |
|
age_data = clinical_df[candidate_age_cols] |
|
age_preview = preview_df(age_data) |
|
print("\nAge column preview:") |
|
print(age_preview) |
|
|
|
|
|
gender_preview = {} |
|
if candidate_gender_cols: |
|
gender_data = clinical_df[candidate_gender_cols] |
|
gender_preview = preview_df(gender_data) |
|
print("\nGender column preview:") |
|
print(gender_preview) |
|
candidate_age_cols = ["_AGE", "AGE", "age", "Age", "age_at_initial_pathologic_diagnosis"] |
|
candidate_gender_cols = ["_GENDER", "GENDER", "gender", "Gender", "SEX", "sex", "Sex"] |
|
|
|
|
|
|
|
age_preview = {} |
|
gender_preview = {} |
|
|
|
|
|
raise ValueError("Missing required input: Need candidate demographic columns and their preview values from the previous step to make informed column selection.") |
|
|
|
selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)" |
|
cohort_dir = os.path.join(tcga_root_dir, selected_cohort) |
|
|
|
|
|
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file_path, index_col=0) |
|
|
|
|
|
if candidate_age_cols: |
|
age_preview = clinical_df[candidate_age_cols].head().to_dict('list') |
|
print("Age columns preview:", age_preview) |
|
|
|
|
|
if candidate_gender_cols: |
|
gender_preview = clinical_df[candidate_gender_cols].head().to_dict('list') |
|
print("Gender columns preview:", gender_preview) |
|
|
|
selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)" |
|
cohort_dir = os.path.join(tcga_root_dir, selected_cohort) |
|
|
|
|
|
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir) |
|
|
|
|
|
clinical_data = pd.read_csv(clinical_file_path, index_col=0, sep='\t') |
|
|
|
|
|
age_data = clinical_data[candidate_age_cols] |
|
gender_data = clinical_data[candidate_gender_cols] |
|
|
|
|
|
print("Age columns preview:") |
|
print(preview_df(age_data)) |
|
print("\nGender columns preview:") |
|
print(preview_df(gender_data)) |
|
|
|
selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)" |
|
cohort_dir = os.path.join(tcga_root_dir, selected_cohort) |
|
|
|
|
|
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) |
|
|
|
|
|
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') |
|
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') |
|
|
|
|
|
print("Clinical data columns:") |
|
print(clinical_df.columns.tolist()) |
|
|
|
candidate_age_cols = ['age_at_initial_pathologic_diagnosis'] |
|
candidate_gender_cols = ['gender'] |
|
|
|
|
|
clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir) |
|
clinical_df = pd.read_csv(clinical_file_path, index_col=0) |
|
|
|
|
|
if candidate_age_cols: |
|
age_preview = clinical_df[candidate_age_cols].head() |
|
print("Age columns preview:") |
|
print(preview_df(age_preview)) |
|
|
|
|
|
if candidate_gender_cols: |
|
gender_preview = clinical_df[candidate_gender_cols].head() |
|
print("\nGender columns preview:") |
|
print(preview_df(gender_preview)) |
|
|
|
age_col = "age_at_initial_pathologic_diagnosis" |
|
gender_col = "gender" |
|
|
|
|
|
print(f"Selected age column: {age_col}") |
|
print(f"Selected gender column: {gender_col}") |
|
|
|
|
|
clinical_features = tcga_select_clinical_features( |
|
clinical_df, |
|
trait=trait, |
|
age_col='age_at_initial_pathologic_diagnosis', |
|
gender_col='gender' |
|
) |
|
|
|
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) |
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
|
|
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_gene_df.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = pd.merge( |
|
clinical_features, |
|
normalized_gene_df.T, |
|
left_index=True, |
|
right_index=True, |
|
how='inner' |
|
) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Contains molecular data from tumor and normal samples with patient demographics." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort="TCGA", |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |