|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Epilepsy" |
|
cohort = "GSE123993" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Epilepsy" |
|
in_cohort_dir = "../DATA/GEO/Epilepsy/GSE123993" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Epilepsy/GSE123993.csv" |
|
out_gene_data_file = "./output/preprocess/3/Epilepsy/gene_data/GSE123993.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Epilepsy/clinical_data/GSE123993.csv" |
|
json_path = "./output/preprocess/3/Epilepsy/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print("-" * 50) |
|
print(background_info) |
|
print("\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
print("-" * 50) |
|
for row, values in unique_values_dict.items(): |
|
print(f"{row}:") |
|
print(f" {values}") |
|
print() |
|
|
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 3 |
|
|
|
age_row = None |
|
|
|
gender_row = 1 |
|
|
|
|
|
def convert_trait(value): |
|
|
|
if ':' in value: |
|
value = value.split(':')[1].strip() |
|
|
|
if '25-hydroxycholecalciferol' in value or '25(OH)D3' in value: |
|
return 1 |
|
elif 'Placebo' in value: |
|
return 0 |
|
return None |
|
|
|
def convert_gender(value): |
|
if ':' in value: |
|
value = value.split(':')[1].strip() |
|
|
|
if value.lower() == 'female': |
|
return 0 |
|
elif value.lower() == 'male': |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
|
|
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
|
|
preview_dict = preview_df(selected_clinical_df) |
|
print("Preview of clinical data:") |
|
print(preview_dict) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 probe IDs:") |
|
print(genetic_data.index[:20]) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview_dict = preview_df(gene_annotation) |
|
print("Column names and preview values:") |
|
for col, values in preview_dict.items(): |
|
print(f"\n{col}:") |
|
print(values) |
|
|
|
|
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
preview_dict = preview_df(gene_data) |
|
print("Preview of gene data:") |
|
for i, (col, values) in enumerate(preview_dict.items()): |
|
if i >= 5: |
|
break |
|
print(f"\n{col}:") |
|
print(values) |
|
|
|
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
gene_data = pd.read_csv(out_gene_data_file, index_col=0) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = ("This dataset studies vitamin D supplementation effects on skeletal muscle transcriptome. " |
|
"Data quality is acceptable but the study size is relatively small.") |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |
|
else: |
|
print(f"Dataset {cohort} did not pass quality validation and will not be saved.") |