|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Generalized_Anxiety_Disorder" |
|
cohort = "GSE61672" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Generalized_Anxiety_Disorder" |
|
in_cohort_dir = "../DATA/GEO/Generalized_Anxiety_Disorder/GSE61672" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Generalized_Anxiety_Disorder/GSE61672.csv" |
|
out_gene_data_file = "./output/preprocess/3/Generalized_Anxiety_Disorder/gene_data/GSE61672.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Generalized_Anxiety_Disorder/clinical_data/GSE61672.csv" |
|
json_path = "./output/preprocess/3/Generalized_Anxiety_Disorder/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print("-" * 50) |
|
print(background_info) |
|
print("\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
print("-" * 50) |
|
for row, values in unique_values_dict.items(): |
|
print(f"{row}:") |
|
print(f" {values}") |
|
print() |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 4 |
|
age_row = 0 |
|
gender_row = 1 |
|
|
|
|
|
def convert_trait(value): |
|
if not isinstance(value, str): |
|
return None |
|
if "anxiety case/control:" not in value: |
|
return None |
|
value = value.split("anxiety case/control:")[1].strip() |
|
if value == "case": |
|
return 1 |
|
elif value == "control": |
|
return 0 |
|
return None |
|
|
|
def convert_age(value): |
|
if not isinstance(value, str): |
|
return None |
|
if "age:" not in value: |
|
return None |
|
try: |
|
age = int(value.split("age:")[1].strip()) |
|
return age |
|
except: |
|
return None |
|
|
|
def convert_gender(value): |
|
if not isinstance(value, str): |
|
return None |
|
if "Sex:" not in value: |
|
return None |
|
sex = value.split("Sex:")[1].strip() |
|
if sex == "F": |
|
return 0 |
|
elif sex == "M": |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None) |
|
|
|
|
|
clinical_data = pd.DataFrame({'Sample': [], 'Value': []}) |
|
clinical_data.set_index('Sample', inplace=True) |
|
|
|
selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait, |
|
age_row, convert_age, |
|
gender_row, convert_gender) |
|
print("Preview of selected clinical features:") |
|
print(preview_df(selected_clinical)) |
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print("-" * 50) |
|
print(background_info) |
|
print("\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
print("-" * 50) |
|
for row, values in unique_values_dict.items(): |
|
print(f"{row}:") |
|
print(f" {values}") |
|
print() |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 probe IDs:") |
|
print(genetic_data.index[:20]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview_dict = preview_df(gene_annotation) |
|
print("Column names and preview values:") |
|
for col, values in preview_dict.items(): |
|
print(f"\n{col}:") |
|
print(values) |
|
|
|
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait, |
|
age_row, convert_age, |
|
gender_row, convert_gender) |
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Blood gene expression data from Generalized Anxiety Disorder patients and healthy controls, with good sample size and complete trait information." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |
|
else: |
|
print(f"Dataset {cohort} did not pass quality validation and will not be saved.") |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 probe IDs:") |
|
print(genetic_data.index[:20]) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol') |
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait, |
|
age_row, convert_age, |
|
gender_row, convert_gender) |
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Blood gene expression data from Generalized Anxiety Disorder patients and healthy controls, with good sample size and complete trait information." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |
|
else: |
|
print(f"Dataset {cohort} did not pass quality validation and will not be saved.") |
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print("-" * 50) |
|
print(background_info) |
|
print("\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
print("-" * 50) |
|
for row, values in unique_values_dict.items(): |
|
print(f"{row}:") |
|
print(f" {values}") |
|
print() |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 4 |
|
age_row = 0 |
|
gender_row = 1 |
|
|
|
|
|
def convert_trait(value: Any) -> Optional[float]: |
|
"""Convert anxiety case/control status to binary""" |
|
if pd.isna(value): |
|
return None |
|
if isinstance(value, (int, float)): |
|
return float(value) |
|
if not value or value == '.': |
|
return None |
|
value = str(value).split(': ')[-1].lower() |
|
if 'case' in value: |
|
return 1.0 |
|
elif 'control' in value: |
|
return 0.0 |
|
return None |
|
|
|
def convert_age(value: Any) -> Optional[float]: |
|
"""Convert age to float""" |
|
if pd.isna(value): |
|
return None |
|
if isinstance(value, (int, float)): |
|
return float(value) |
|
if not value or value == '.': |
|
return None |
|
try: |
|
return float(str(value).split(': ')[-1]) |
|
except: |
|
return None |
|
|
|
def convert_gender(value: Any) -> Optional[float]: |
|
"""Convert gender to binary (F=0, M=1)""" |
|
if pd.isna(value): |
|
return None |
|
if isinstance(value, (int, float)): |
|
return float(value) |
|
if not value or value == '.': |
|
return None |
|
value = str(value).split(': ')[-1].upper() |
|
if value == 'F': |
|
return 0.0 |
|
elif value == 'M': |
|
return 1.0 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if clinical_data is not None and len(clinical_data) > 0: |
|
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
print("Preview of selected clinical features:") |
|
print(preview_df(selected_clinical_df)) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
else: |
|
print("Warning: clinical_data is empty or not initialized") |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 probe IDs:") |
|
print(genetic_data.index[:20]) |