Liu-Hy's picture
Add files using upload-large-folder tool
ee5a411 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Glioblastoma"
cohort = "GSE249289"
# Input paths
in_trait_dir = "../DATA/GEO/Glioblastoma"
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE249289"
# Output paths
out_data_file = "./output/preprocess/3/Glioblastoma/GSE249289.csv"
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE249289.csv"
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE249289.csv"
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene expression data availability check
is_gene_available = True # Based on series title and design, this is gene expression data
# 2. Data availability and conversion functions
trait_row = None # No direct disease status as all samples are glioblastoma
age_row = 2 # Age information is in row 2
gender_row = 1 # Gender information is in row 1
def convert_age(x):
try:
# Extract numeric value after colon
age = int(x.split(': ')[1])
return age
except:
return None
def convert_gender(x):
try:
# Extract value after colon and convert to binary
gender = x.split(': ')[1].lower()
if gender == 'female':
return 0
elif gender == 'male':
return 1
return None
except:
return None
def convert_trait(x):
# Not used as trait data not available
return None
# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract clinical features if available
# Skip this step since trait_row is None
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers start with "ILMN_" which indicates they are Illumina probe IDs
# These need to be mapped to official human gene symbols for analysis
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Get mapping dataframe with ID and Symbol columns from gene annotation
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Apply mapping to convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, gene_mapping)
# Print shape and preview to verify the mapping result
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
# 1. Normalize gene symbols and save normalized gene data
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Extract clinical features and link with genetic data
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=None,
age_row=2,
convert_age=convert_age,
gender_row=1,
convert_gender=convert_gender
)
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, "Age") # Use Age as primary feature since trait is not available
# 4. Check for biased features and remove them if needed
is_biased = False # Only demographic features, no trait to be biased
linked_data = judge_and_remove_biased_features(linked_data, "Age")[1] # Use Age since trait is not available
# 5. Validate and save cohort info
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=is_biased,
df=linked_data,
note="Contains gene expression data with age and gender information, but no trait data for analysis"
)
# 6. Save linked data with demographic features
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# 1. Normalize gene symbols and save normalized gene data
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Record metadata about dataset's unavailability for trait analysis
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=None,
df=None,
note="Contains gene expression data from glioblastoma tumorspheres but no control samples for trait analysis"
)