# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "HIV_Resistance" | |
cohort = "GSE117748" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/HIV_Resistance" | |
in_cohort_dir = "../DATA/GEO/HIV_Resistance/GSE117748" | |
# Output paths | |
out_data_file = "./output/preprocess/3/HIV_Resistance/GSE117748.csv" | |
out_gene_data_file = "./output/preprocess/3/HIV_Resistance/gene_data/GSE117748.csv" | |
out_clinical_data_file = "./output/preprocess/3/HIV_Resistance/clinical_data/GSE117748.csv" | |
json_path = "./output/preprocess/3/HIV_Resistance/cohort_info.json" | |
# Get relevant file paths | |
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) | |
# Extract background info and clinical data from the matrix file | |
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) | |
# Get dictionary of unique values per row in clinical data | |
unique_values_dict = get_unique_values_by_row(clinical_data) | |
# Print background info | |
print("Background Information:") | |
print("-" * 50) | |
print(background_info) | |
print("\n") | |
# Print clinical data unique values | |
print("Sample Characteristics:") | |
print("-" * 50) | |
for row, values in unique_values_dict.items(): | |
print(f"{row}:") | |
print(f" {values}") | |
print() | |
# 1. Gene Expression Data Availability | |
# This is a miRNA study on cell lines (based on the title and sample characteristics) | |
is_gene_available = False | |
# 2.1 Data Availability | |
# From sample characteristics, no human trait, age or gender data available | |
trait_row = None | |
age_row = None | |
gender_row = None | |
# 2.2 Data Type Conversion functions (not used but defined for completeness) | |
def convert_trait(x): | |
return None | |
def convert_age(x): | |
return None | |
def convert_gender(x): | |
return None | |
# 3. Save Metadata | |
# Validate and save cohort info - initial filtering | |
validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=False # trait_row is None | |
) | |
# 4. Clinical Feature Extraction | |
# Skip since trait_row is None |