|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Head_and_Neck_Cancer" |
|
cohort = "GSE156915" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Head_and_Neck_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Head_and_Neck_Cancer/GSE156915" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/GSE156915.csv" |
|
out_gene_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/gene_data/GSE156915.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/clinical_data/GSE156915.csv" |
|
json_path = "./output/preprocess/3/Head_and_Neck_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print("-" * 50) |
|
print(background_info) |
|
print("\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
print("-" * 50) |
|
for row, values in unique_values_dict.items(): |
|
print(f"{row}:") |
|
print(f" {values}") |
|
print() |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = None |
|
convert_trait = None |
|
|
|
|
|
age_row = None |
|
convert_age = None |
|
|
|
|
|
gender_row = None |
|
convert_gender = None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 probe IDs:") |
|
print(genetic_data.index[:20]) |
|
|
|
|
|
|
|
|
|
requires_gene_mapping = False |
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
dummy_data = pd.DataFrame([[0]], columns=['dummy']) |
|
is_biased = True |
|
|
|
note = "Dataset contains gene expression data but lacks trait information needed for association studies." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=is_biased, |
|
df=dummy_data, |
|
note=note |
|
) |
|
|
|
print(f"Dataset {cohort} contains no trait information and will not be used for analysis.") |