Liu-Hy's picture
Add files using upload-large-folder tool
54d4d57 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Huntingtons_Disease"
cohort = "GSE135589"
# Input paths
in_trait_dir = "../DATA/GEO/Huntingtons_Disease"
in_cohort_dir = "../DATA/GEO/Huntingtons_Disease/GSE135589"
# Output paths
out_data_file = "./output/preprocess/3/Huntingtons_Disease/GSE135589.csv"
out_gene_data_file = "./output/preprocess/3/Huntingtons_Disease/gene_data/GSE135589.csv"
out_clinical_data_file = "./output/preprocess/3/Huntingtons_Disease/clinical_data/GSE135589.csv"
json_path = "./output/preprocess/3/Huntingtons_Disease/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# From the background information, we can see this is a study of gene expression in blood
is_gene_available = True
# 2. Data Availability and Type Conversion
# 2.1 Row identifiers
trait_row = 4 # "disease stage" contains HD status
age_row = 2 # "age at year 1" contains age information
gender_row = 1 # "Sex" contains gender information
# 2.2 Data type conversion functions
def convert_trait(value: str) -> int:
"""Convert disease stage to binary (0: control, 1: HD-related)"""
if not value or ':' not in value:
return None
stage = value.split(':')[1].strip().lower()
if 'control' in stage:
return 0
elif any(x in stage for x in ['prehd', 'zhd']):
return 1
return None
def convert_age(value: str) -> float:
"""Convert age string to float"""
if not value or ':' not in value:
return None
try:
return float(value.split(':')[1].strip())
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary (0: female, 1: male)"""
if not value or ':' not in value:
return None
gender = value.split(':')[1].strip().lower()
if 'female' in gender:
return 0
elif 'male' in gender:
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(selected_clinical)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
# Apply the gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview first few rows of gene expression data
print("Preview of gene expression data:")
print(preview_df(gene_data))
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains gene expression data from human embryonic stem cells and their neural stem cell progeny, comparing HD mutation carriers with wild type controls"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)