|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Intellectual_Disability" |
|
cohort = "GSE59630" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Intellectual_Disability" |
|
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE59630" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE59630.csv" |
|
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE59630.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE59630.csv" |
|
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
print(json.dumps(unique_values_dict, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = 2 |
|
age_row = 4 |
|
gender_row = 3 |
|
|
|
|
|
def convert_trait(x): |
|
"""Convert disease status to binary (0: Control, 1: DS)""" |
|
if x is None: |
|
return None |
|
value = x.split(': ')[-1].strip() |
|
if value == 'CTL': |
|
return 0 |
|
elif value == 'DS': |
|
return 1 |
|
return None |
|
|
|
def convert_age(x): |
|
"""Convert age to continuous numeric value in years""" |
|
if x is None: |
|
return None |
|
value = x.split(': ')[-1].strip().lower() |
|
|
|
|
|
try: |
|
num = float(''.join(filter(str.isdigit, value))) |
|
if 'wg' in value: |
|
return num/52 |
|
elif 'mo' in value: |
|
return num/12 |
|
elif 'yr' in value: |
|
return num |
|
return None |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
"""Convert gender to binary (0: Female, 1: Male)""" |
|
if x is None: |
|
return None |
|
value = x.split(': ')[-1].strip() |
|
if value == 'F': |
|
return 0 |
|
elif value == 'M': |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features(clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
|
|
preview = preview_df(clinical_features) |
|
print("Preview of clinical features:", preview) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 row IDs:") |
|
print(genetic_data.index[:20].tolist()) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Column names:") |
|
print(gene_metadata.columns.tolist()) |
|
|
|
|
|
print("\nData shape:", gene_metadata.shape) |
|
|
|
|
|
print("\nNumber of non-NaN values in key columns:") |
|
for col in ['ID', 'gene_assignment']: |
|
print(f"{col}: {gene_metadata[col].notna().sum()}") |
|
|
|
|
|
print("\nPreview of rows with gene information:") |
|
gene_rows = gene_metadata[gene_metadata['gene_assignment'].notna()].head() |
|
print(json.dumps(preview_df(gene_rows), indent=2)) |
|
|
|
|
|
|
|
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
print("\nOriginal probes:", len(genetic_data)) |
|
print("Mapped genes:", len(gene_data)) |
|
print("\nPreview of first few genes and their expression values:") |
|
print(json.dumps(preview_df(gene_data), indent=2)) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
clinical_features = geo_select_clinical_features( |
|
clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
if linked_data[trait].isna().all(): |
|
is_biased = True |
|
linked_data = None |
|
else: |
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |