Liu-Hy's picture
Add files using upload-large-folder tool
0a0878d verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Kidney_Chromophobe"
cohort = "GSE40914"
# Input paths
in_trait_dir = "../DATA/GEO/Kidney_Chromophobe"
in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE40914"
# Output paths
out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE40914.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE40914.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE40914.csv"
json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this is a microarray dataset studying gene expression
# including lncRNAs in RCC, so gene data should be available
is_gene_available = True
# 2. Data Availability and Type Conversion
# Sample characteristics show limited data - disease, tissue, and sample type
# 2.1 Data Availability
# trait_row - Can infer case/control from "tissue" field (row 1)
trait_row = 1
# age_row - Not available
age_row = None
# gender_row - Not available
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert tissue field to binary trait"""
if not isinstance(value, str):
return None
# Extract value after colon
if ':' in value:
value = value.split(':', 1)[1].strip()
# Map tissue type to binary - tumor (1) vs non-tumor (0)
if 'tumor' in value.lower():
return 1
return 0
# No age/gender conversion functions needed since data not available
convert_age = None
convert_gender = None
# 3. Save Metadata
# Initial validation based on gene and trait availability
is_validated = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
# Look at general data statistics
print("\nData shape:", gene_metadata.shape)
# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# 1. In gene expression data, row IDs are simple numbers like "1", "2", etc.
# From annotation preview, 'ID' contains the same identifiers
# 'GENE_SYMBOL' contains the target gene symbols we want to map to
prob_col = 'ID'
gene_col = 'GENE_SYMBOL'
# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
# Convert expression values to numeric type, handling 'Null' values
genetic_data = genetic_data.replace(['Null', 'null', 'NULL'], pd.NA)
numeric_cols = genetic_data.columns
genetic_data[numeric_cols] = genetic_data[numeric_cols].astype(float)
# 3. Convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Print dimensions of output
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few gene symbols:", gene_data.index[:5].tolist())
# 1. In gene expression data, row IDs are simple numbers like "1", "2", etc.
# From annotation preview, 'ID' contains the same identifiers
# 'GENE_SYMBOL' contains the target gene symbols we want to map to
prob_col = 'ID'
gene_col = 'GENE_SYMBOL'
# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
# Convert expression values to numeric type
numeric_cols = genetic_data.columns
genetic_data[numeric_cols] = genetic_data[numeric_cols].apply(pd.to_numeric, errors='coerce')
# 3. Convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Print dimensions of output
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few gene symbols:", gene_data.index[:5].tolist())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
is_biased = True
linked_data = None
else:
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples from various tissue types including kidney, lung, stomach and other organs, with both tumor and normal tissues."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)