|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Kidney_stones" |
|
cohort = "GSE73680" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Kidney_stones" |
|
in_cohort_dir = "../DATA/GEO/Kidney_stones/GSE73680" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Kidney_stones/GSE73680.csv" |
|
out_gene_data_file = "./output/preprocess/3/Kidney_stones/gene_data/GSE73680.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Kidney_stones/clinical_data/GSE73680.csv" |
|
json_path = "./output/preprocess/3/Kidney_stones/cohort_info.json" |
|
|
|
|
|
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_path) |
|
|
|
|
|
sample_chars = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nClinical Features Overview:") |
|
print(json.dumps(sample_chars, indent=2)) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 2 |
|
age_row = None |
|
gender_row = 0 |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert tissue type to binary stone status (0: no stones, 1: stone former)""" |
|
if not value or ":" not in value: |
|
return None |
|
value = value.split(":")[1].strip().lower() |
|
if "control patients without any kidney stone" in value: |
|
return 0 |
|
elif "from calcium stone" in value: |
|
return 1 |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary (0: female, 1: male)""" |
|
if not value or ":" not in value: |
|
return None |
|
value = value.split(":")[1].strip().lower() |
|
if value == "female": |
|
return 0 |
|
elif value == "male": |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=None, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of processed clinical features:") |
|
print(preview_df(clinical_features)) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_path) |
|
|
|
|
|
print("First few rows of the raw data:") |
|
print(genetic_data.head()) |
|
|
|
print("\nShape of the data:") |
|
print(genetic_data.shape) |
|
|
|
|
|
print("\nFirst 20 probe/gene identifiers:") |
|
print(list(genetic_data.index)[:20]) |
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_path) |
|
|
|
|
|
print("Gene annotation data preview:") |
|
print(preview_df(gene_metadata)) |
|
|
|
|
|
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
print("\nFirst few rows of mapped gene expression data:") |
|
print(gene_data.head()) |
|
|
|
print("\nShape after mapping:") |
|
print(gene_data.shape) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
|
|
note = "This dataset compares gene expression between matched tumor and non-tumor kidney tissue samples." |
|
is_usable = validate_and_save_cohort_info(is_final=True, cohort=cohort, info_path=json_path, |
|
is_gene_available=True, is_trait_available=True, |
|
is_biased=trait_biased, df=linked_data, note=note) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |