Liu-Hy's picture
Add files using upload-large-folder tool
f811ee7 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Kidney_stones"
cohort = "GSE73680"
# Input paths
in_trait_dir = "../DATA/GEO/Kidney_stones"
in_cohort_dir = "../DATA/GEO/Kidney_stones/GSE73680"
# Output paths
out_data_file = "./output/preprocess/3/Kidney_stones/GSE73680.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_stones/gene_data/GSE73680.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_stones/clinical_data/GSE73680.csv"
json_path = "./output/preprocess/3/Kidney_stones/cohort_info.json"
# Get paths for relevant files
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_path)
# Get unique values for each clinical feature
sample_chars = get_unique_values_by_row(clinical_data)
# Print dataset background information
print("Background Information:")
print(background_info)
print("\nClinical Features Overview:")
print(json.dumps(sample_chars, indent=2))
# 1. Gene Expression Data Availability
# Yes, this is a microarray gene expression study comparing Randall's Plaque vs normal tissue
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 2 # Can infer stone status from tissue type
age_row = None # Age not available
gender_row = 0 # Gender is available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert tissue type to binary stone status (0: no stones, 1: stone former)"""
if not value or ":" not in value:
return None
value = value.split(":")[1].strip().lower()
if "control patients without any kidney stone" in value:
return 0
elif "from calcium stone" in value:
return 1
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary (0: female, 1: male)"""
if not value or ":" not in value:
return None
value = value.split(":")[1].strip().lower()
if value == "female":
return 0
elif value == "male":
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=None,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical features
print("Preview of processed clinical features:")
print(preview_df(clinical_features))
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data
genetic_data = get_genetic_data(matrix_path)
# Preview raw data structure
print("First few rows of the raw data:")
print(genetic_data.head())
print("\nShape of the data:")
print(genetic_data.shape)
# Print first 20 row IDs to verify data structure
print("\nFirst 20 probe/gene identifiers:")
print(list(genetic_data.index)[:20])
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_path)
# Preview annotation data structure
print("Gene annotation data preview:")
print(preview_df(gene_metadata))
# 1. Identify the mapping columns: ID for probe identifiers, GENE_SYMBOL for gene symbols
# 2. Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview mapped gene data
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
print("\nShape after mapping:")
print(gene_data.shape)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove biased demographic ones
# The function will print detailed distribution information
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save metadata about dataset quality
# The validation is affected by if the trait is biased, if the data has been filtered out, etc.
note = "This dataset compares gene expression between matched tumor and non-tumor kidney tissue samples."
is_usable = validate_and_save_cohort_info(is_final=True, cohort=cohort, info_path=json_path,
is_gene_available=True, is_trait_available=True,
is_biased=trait_biased, df=linked_data, note=note)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)